• Title/Summary/Keyword: resin acid

Search Result 774, Processing Time 0.021 seconds

ELECTRON MICROSCOPIC STUDY OF RESIN-DENTIN HYBRID ZONE PRODUCED BY THE MOISTENING OF ACID CONDITIONED DENTIN SURFACE (산 표면처리 후 상아질 표면의 습윤이 하이브리드층 형성에 관한 전자현미경적 연구)

  • Lee, Kwang-Won;Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.463-486
    • /
    • 1995
  • The effect of moistening and air-drying of acid-conditioned dentin before priming on the formation of resin-dentin hybrid zone was investigated, Freshly extracted human molars were used and divided at random into 5 groups, Groups 1 - 3 consisted of specimens conditioned with 10 % phosphoric acid for 20 seconds; Group 1 served as a control in which the conditioned dentin was simply blot-dried with a damp facial tissue; Group 2 was air dried for 30 seconds ; Group 3 was air dried for 30 seconds and immediately remoistened for 10 seconds with air-water syringe. and then the specimen was blot-dried with a damp facial tissue. Groups 4-5 were not acid conditioned ; In group 4, the smear layer on the dentin was blot dried before primer placement; Group 5 was air dried only for 30 seconds, The acetone-based primer and bonding agent of All Bond 2 (Bisco. Inc., USA) and composite resin (Z-100, 3M Dental products, USA) were applied for acid conditioned dentin and non-conditioned dentin. The morphologic ultrastructure of resin-dentin hybrid zone was examined by the use of SEM and TEM. and the existence of inorganic material and analysis of Ca/P weight-percent ratio in the resin-dentin hybrid zone were revealed by the EDAX, The results were as follows : 1. In the moistened specimens from acid-conditioned groups, the resin penetrated about 3-$4{\mu}m$ into dentin and the denatured collagen smear layer was not present at the surface. The resin tag was formed to a thickeness of 3-$4{\mu}m$ at the upper part of dentinal tubule and compactively connected to each other by means of many lateral branching. 2. In the air-dried specimens from acid-conditioned groups, the resin penetrated about 2.0-$2.5\;{\mu}m$ into dentin and an upper thin black layer to a thickness of 30-35nm was identified between adhesive resin and demineralized collagen layer. The resin tag to have a diameter of $2.5{\mu}m$ was formed at the upper part of dentinal tubule. However the funnel shape of the tag was not notable compared to the moistened specimens. 3. In the remoistened specimens from acid conditioned groups, the resin penetrated about 2.0-$2.5{\mu}m$ into dentin and an upper black layer was not present. The resin tag at the upper part of dentinal tubule was formed less than $2{\mu}m$ and was weakly connected to each other by means of few lateral branching. 4. In the non-conditioned groups, the smear layer was formed to a thickness of $0.5{\mu}m$ at dentin surface. However, the resin-dentin hybrid zone was not identified by TEM. The evidence of resin penetration into intertubular and intratubular dentin did not show. 5. All the acid-conditioned groups showed that the detected calcium and phosphorus weight percent ratios at the $2{\mu}m$ upper portion from the resin-dentin interface into the resin were much higher than that at the $2{\mu}m$ lower portion from the resin-dentin interface to dentin. (P<0.01).

  • PDF

Microstructure of Cured Urea-Formaldehyde Resins Modified by Rubber Latex Emulsion after Hydrolytic Degradation

  • Nuryawan, Arif;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.605-614
    • /
    • 2014
  • This study investigated microstructural changes of cured urea-formaldehyde (UF) resins mixed with aqueous rubber latex emulsion after intentional acid etching. Transmission electron microscopy (TEM) was used in order to better understand a hydrolytic degradation process of cured UF resins responsible for the formaldehyde emission from wood-based composite panels. A liquid UF resin with a formaldehyde to urea (F/U) molar ratio 1.0 was mixed with a rubber latex emulsion at three different mixing mass ratios (UF resin to latex = 30:70, 50:50, and 70:30). The rate of curing of the liquid modified UF resins decreased with an increase of the rubber latex proportion as determined by differential scanning calorimetry (DSC) measurement. Ultrathin sections of modified and cured UF resin films were exposed to hydrochloric acid etching in order to mimic a certain hydrolytic degradation. TEM observation showed spherical particles and various cavities in the cured UF resins after the acid etching, indicating that the acid etching had hydrolytically degraded some part of the cured UF resin by acid hydrolysis, also showing spherical particles of cured UF resin dispersed in the latex matrix. These results suggested that spherical structures of cured UF resin might play an important role in hindering the hydrolysis degradation of cured UF resin.

Diterpene Resin Acids of Pinus Koraiensis Needles, Cortex and Xylem (잣나무 Diterpene Resin Acid 의 분석)

  • Han, James S.;Hwang, Byung-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.62-68
    • /
    • 1988
  • 잣나무의 Diterpene resin acids의 함량을 조사하기 위하여 침엽(needle), 일차조직(cortex), 목질부(sylem)별로 수지를 채취하여 최근 유행하고 있는 capillary column을 사용하는 GC를 이용하여 정량분석을 하였다. 분석결과 7종의 resin acid가 밝혀졌으며, 그 중 lambertianic acid는 neelde에서 74~87%, cortex에서 42-57%, xylem에서 18-28%로 분석되었는데, 다른 Pinus류에서 보다 훨씬 많은 양이 함유되어 병리곤충 분야나 농약 분야에서 고찰할 만한 가치가 있다고 생각하며, 그 외 l-obrnyltrans-p-coumarate, isocupressic acid pinusolide 등도 분석 되었다.

  • PDF

AN EXPERIMENTAL STUDY ON THE TENSILE STRENGTH OF COMPOSITE RESIN TO ETCHED DENTIN SURFACE (상아질면(象牙質面)에 대(對)한 복합(複合)resin 인장강도(引張強度)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Pak, Sun-Jae;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.8 no.1
    • /
    • pp.107-113
    • /
    • 1982
  • The purpose of this study was to observe the tensile strength of composite resins to etched dentin surface with the various methods of placing bonding agent before composite resin or placing composite resin alone. Recently extracted 60 maxillary incisors were chosen. These were divided into 6 groups: Group I : Immediate Silar adaptation to the etched dentin surface with 37% phosphoric acid for 60 seconds without bonding agent. Group II : Immediate Silar adaptation to the etched dentin surface with 37% phosphoric acid for 60 seconds with bonding agent. Group III : Silar adaptation to the etched dentin surface with 37% phosphoric acid for 60 seconds after 5 minutes of bonding agent. Group IV : Immediate Enamelite adaptation to the etched dentin surfaces with 50% phosphoric acid for 120 seconds without bonding agent. Group V : Immediate Enamelite adaptation to the etched dentin surface with 50% phosphoric acid for 120 second s with bonding again. Group VI : Enamelite adaptation to the etched dentin surface with 50% phosphoric acid for 120 seconds after 5 minutes of bonding agent. All specimens were immersed in water at $37^{\circ}C$ for 24 hours before testing. The results were as follows: 1. The tensile strength of powder/liquid composite resin system was higher than that of pastel paste composite resin system. 2. The tensile strength of the composite resin group II, III, V, & VI with bonding agent was higher than that of the composite resin group I & IV without bonding agent. 3. The tensile strength of the composite resin group III & VI after 5 minutes added to bonding agent was higher than that of the composite resin group II & V immediately added to bonding agent.

  • PDF

A SHEAR BOND STRENGTH OF RESIN CEMENTS BONDED TO PRESSABLE PORCELAIN WITH VARIOUS SURFACE TREATMENTS

  • Lee Jong-Yeop;Im Eui-Bin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.379-386
    • /
    • 2003
  • Statement of problem. Resin cements are widely used in adhesive dentistry specially on all ceramic restorations. It is needed to find out adequate bonding strength between different porcelain surface treatments, commercially available porcelains, and different resin cement systems. Purpose. The purpose of this study was to evaluate shear bond strength of resin cements bonded to porcelains in three different modalities; 5 different porcelain surface treatments, 3 different resin cement systems and 3 different commercially available pressable porcelains. Material and Method. This study consisted of 3 parts. Part I examined the effect of five different surface treatments on the pressable porcelain. Fifty discs (5 mm in diameter and 3 mm in height) of Authentic porcelain were randomly divided into 5 groups (n = 10). The specimens were sanded with 320 grit SiC paper followed by 600 grit SiC paper. The specimens were treated as follow: Group 1-Sandblasting (aluminum oxide) only, Group 2 - sandblasting/ silane, Group 3 - sandblasting/ acid etching/ silane, Group 4 - acid etching only, Group 5 - acid etching/ silane. Part II examined the shear bond strength of 3 different resin cement systems (Duolink, Variolink II, Rely X ARC) on acid etching/ silane treated Authentic pressable porcelain. Part 3 examined the shear bond strength of Duolink resin cement on 3 different pressable porcelains (Authentic, Empress I, Finesse). All cemented specimens were stored in distilled water for 2 hours and tested with Ultradent shear bond strength test jig under Universal Instron machine until fracture. An analysis of variance(ANOVA) test was used to evaluate differences in shear bond strength. Result. The shear bond strength test resulted in the following: (1) Acid etched porcelains recorded greater shear bond strength values to the sandblasted porcelains. (2) Silane treated porcelains recorded greater shear bond strength values to non-silane treated porcelains. (3) There was no significant difference between sandblasting/ acid etching/ silane treated and acid etching/ silane treated porcelains. However those values were much higher than other three groups. (4) The shear bond strength with Variolink II was lower than the value of Duolink or Rely X ARC. (5) The shear bond strength of Finesse was lower than the value of Authentic or Empress I.

Simultaneous Saccharification and Extractive Fermentation for Lactic Acid Production (동시당화 및 추출발효에 의한 Lactic Acid 생산)

  • 공창범;우창호;최실호;윤현희
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.212-219
    • /
    • 1999
  • lactic acid production from cellulose by simultaneous saccharification and fermentation(SSF) was studied. The SSF using cellulase enzyme Cytolase CL and Lactobacillus delbrueckii was strongly inhibited by the end product(lactic acid). An ion-exchange resin(RA-400) was used for in-situ product removal during SSF. The sorption capacity of the resin was 200mg/g-resin. The simple SSF and the extractive SSF resulted in lactic acid concentrations of 30.4g/L and 32.0g/L, respectively, at the initial substrate concentration of 50g/L. A model was developed to simulate the extractive SSF. The lactic acid conversion for the initial substrate of 100g/L was estimated to be improved from 60% to 09% by in-situ product removal. The experimentally determined kinectic parameters were pH dependent, and fitted as empirical expressions to establish their values at different pH's. Lactic acid productivity was predicted to be maximum at pH 4.5-5.0.

  • PDF

AN EXPERIMENTAL STUDY ON THE SHEAR BOND STRENGTHS OF COMPOSITE RESIN TO AIR-ABRADED ENAMEL AND DENTIN (표면처리방법에 따른 복합레진의 결합강도에 관한 실험적 연구)

  • Shin, Jae-Ho;Jang, Ki-Taeg;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.112-124
    • /
    • 1997
  • According to extensive use of composite resin which have superior esthetic property, every effort on improving bonding strength between a tooth and composite resin has been continued. Acid etching technique is a method that micro-etches the tooth surface which provides bonding with composite resin possible. Recently, there were several reports that mechanical treatment obtained from air-abrasion can provide similar bonding strength with acid etching technique. So, this experimental study was designed to compare the shear bonding strength between using air-abrasion technique and using acid etching technique. Initially, bovine teeth were divided into enamel and dentin experimental groups. Respectively each group was categorized into three subgroups. One subgroup was acid etched with 35% phosphoric acid, then bonded with composite resin. The other subgroup was air-abraded with $50{\mu}m$ $Al_2O_3$ particles sprayed with 160psi air pressure using air abrasion unit(KCP-1000, A.D.T., U.SA), and composite resin was bonded. In another subgroup, composite resin was bonded after acid etching following air-abrasion. So, enamel experimental groups were made of E1 (acid etched only), E2(air-abraded only), E3(acid etched following air-abraded), and dentin experimental groups were made of D1(acid etched only), D2(air-abraded only), D3(acid etched following air-abraded). Each subgroup had 10 specimens. Dentin bonding system(Scotchbond Multi-purpose, 3M Co., U.S.A.) and composite resin(Z-100, 3M Co., U.S.A.) were applied on treated surface using 5mm diameter gelatin capsule as manufacturer's direction. After 1200 times thermocycling between $5^{\circ}C$ and $55^{\circ}C$, shear bond strength was measured in 5mm/min crosshead speed with Instron(Instron Co., U.S.A.), and also treated enamel and dentin were observed with SEM(JEOL Co., Japan). The following results were obtained: 1. In the enamel experimental groups, acid etched following air-abraded group had highest shear bond strength, but there was no significant difference compared to acid etched group. Air-abraded only group had lowest shear bond strength, and there was significant difference compared to the rest of groups. 2. In the dentin experimental groups, acid etched following air-abraded group had highest shear bond strength, but there was no significant difference compared to acid etched group. Air-abraded only group had lowest shear bond strength, and there was significant difference compared to the rest of groups. 3. In the SEM study, air-abraded enamel and dentin had irregular and rough surfaces.

  • PDF

A study on the dielectric breakdown properties of two and three interpenetrating polymer network epoxy composites (2,3 성분 상호침입망목 에폭시 복합재료의 절연 파괴 특성에 관한 연구)

  • 김명호;김경환;손인환;이덕진;장경욱;김재환
    • Electrical & Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.364-371
    • /
    • 1996
  • In this study, in order to investigate the applicability of IPN structure to epoxy resin which has been widely used as electrical and electronic insulating materials, DC dielectric breakdown properties and morphology were compared and analyzed according to variation of network structure, using the single network structure specimen formed of epoxy resin alone, interpenetrating polymer network specimen formed of epoxy resin/methacrylic acid resin, and interpenetrating polymer network specimen formed of epoxy resin/methacrylic acid resin/polyurethane resin. As results of the measunnent of DC dielectric breakdown strength at 50[.deg. C] and 130[>$^{\circ}C$], IPN specimen formed of epoxn, resin 100[phr] and methacrylic acid resin 35[phr] was the most excellent, and which corresponded to the SEM phenomena. The effect of IPN was more remarkable at high temperature region than at low temperature region. It is supposed that the defect of epoxy resin, dielectric breakdown strength is lowered remarkably at high temperature region, be complemented according to introducing IPN method.

  • PDF

A review of chromatographic analysis for rare-earth elements with focus on Ln resin

  • Jihye Kim;Kihwan Choi
    • Analytical Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.259-266
    • /
    • 2023
  • The demand for rare-earth elements (REEs) is increasing owing to their significance as prominent materials in electronics, high-tech industries, geological research, nuclear forensics, and environmental monitoring. In general, the utilization of REEs in various applications requires the use of chromatographic techniques to separate individual elements. However, REEs have similar physicochemical properties, which makes them difficult to separate. Recently, several studies have examined the separation of REEs using LN resin as the stationary phase and aqueous nitric acid and hydrochloric acid solutions as eluents. Using this method, light REEs have been separated using dilute acid solutions as the eluent, whereas heavy REEs are separated using solutions with high acid concentrations. To increase the separation resolution between different REEs, either the column length or resin size is changed. In addition, the suggested methods are implemented to decrease the analysis time. This review presents technical information on the chromatographic separation of REEs using the LN resin and discusses the optimal experimental conditions.

Radical Scavenging Activity of Kemenyan Resin Produced by an Indonesian Native Plant, Styrax sumatrana

  • Hidayat, Asep;Iswanto, Apri Heri;Susilowati, Arida;Rachmat, Henti Hendalastuti
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.346-354
    • /
    • 2018
  • Kemenyan resin from Styrax sumatrana is a unique non-timber forest product (NTFP) native from Sumatera Island, Indonesia. It possesses a wide range of applications in the pharmaceutical, perfume, and cosmetics industries. In this paper, six kemenyan resin samples were investigated to evaluate their free radical scavenging activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) reagent. The kemenyan resin samples, which originated from North Tapanuli, Pakpak Bharat, and Humbang Hasundutan, showed high antioxidant activity with $IC_{50}$ < 16 mg/L. The antioxidant activity of common kemenyan resin constituents, i.e., cinnamic acid, ethyl cinnamate, gallic acid, and vanillin was also investigated as positive control, although they exhibited lower antioxidant activity ($IC_{50}$ < 1000 mg/L), except for gallic acid ($IC_{50}$ = 5,23 mg/L). The total phenolic and flavonoid contents (TPC and TFC) for all samples were 44-66 mg gallic acid equivalents (GAE)/g sample and 143-160 mg quarcetin equivalents (QE)/g sample. The results revealed that kemenyan resin has high potency as an antioxidant and could be used as a natural antioxidant resource.