• Title/Summary/Keyword: reservoir level

Search Result 559, Processing Time 0.028 seconds

The Variation of Hydro-Geomorphological Environment in Baekgok Wetland due to Water-Level Fluctuation of Reservoir (댐 수위 변동에 따른 백곡습지의 수문지형 환경 변화)

  • Kim, Dong Hyun;Park, Jongkwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.1
    • /
    • pp.39-50
    • /
    • 2017
  • This study was conducted to analyze the variation of hydro-geomorphological environment along Baekgok wetland, which experiencing periodical inundation, in that water-level fluctuation of reservoir caused by irrigation. Since the field data is unavailable, modeling techniques, involving models such as HSPF and TELEMAC-2D, have been applied to simulate hydrological cycle in watershed and hydrodynamics in channel scale. The result of simulation indicates that the water-level of reservoir determines both the water surface extension and water depth in the wetland. Furthermore, it also shows that water-level functions as a spatial limit factor for a fluvial environment and woody vegetation such as willow. The fact of which the scale of water-level fluctuation being larger than an average topographical relief along the wetland can explain the result. While the water-level kept high, the wetland is submerged and waterbody becomes lentic. In contrast, while the water-level is lowered, fluvial phenomena of which being dependent on flow rate and channel shape become active. Hence, the valid fluvial process is likely to take place only for 4 months annually just near the channel, and it advances to a conclusion expecting a deposition to be dominant among the wetland except for such area. It is anticipated that such understanding can contribute to establishing plans to preserve the geomorphological and ecological value of the Baekgok wetland.

Analysis of Environmental Factors of Geomorphology, Hydrology, Water Quality and Shoreline Soil in Reservoirs of Korea (우리나라 저수지에서 지형, 수문, 수질 및 호안 토양 환경요인의 분석)

  • Cho, HyunSuk;Cho, Kang-Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.343-359
    • /
    • 2013
  • In order to understand shoreline environment characteristics of Korean reservoirs, the interrelationships between environmental factors of geomorphology, hydrology, water quality and shoreline soil were analyzed, and the reservoir types were classified according to their environmental characteristics in the 35 reservoirs selected by considering the purpose of dam operations and annual water-level fluctuations. Geomorphological and hydrological characteristics of reservoirs were correlated with the altitude and the size scale of reservoirs. The annual range of water level fluctuation showed a wide variation from 1 m to 27 m in the various reservoirs in Korea. The levels of eutrophication of most reservoirs were mesotrophic or eutrophic. From the result of the soil texture analysis, sand contents were high in reservoir shorelines. Range, frequency and duration of water-level fluctuation were distinctive from the primary function of reservoirs. Flood control reservoirs had a wide range with low frequency and waterpower generation reservoirs had a narrow range with high frequency in the water-level fluctuation. According to the result of CART (classification and regression tree) analysis, the water quality of reservoirs was classified by water depth, range of water-level fluctuation and altitude. The result of PCA (principal component analysis) showed that the type of reservoirs was classified by reservoir size, water-level fluctuation, water quality, soil texture and soil organic matter. In conclusion, reservoir size, the water-level fluctuation, water quality and soil characteristics might be major factors in the environment of reservoir shorelines in Korea.

Simulating Arsenic Concentration Changes in Small Agricultrual Reservoir Using EFDC-WASP Linkage Model (EFDC-WASP 연계모형을 이용한 소규모 농업용 저수지 비소 농도 모의)

  • Hwang, Soonho;Shin, Sat Byeol;Song, Jung-Hun;Yoon, Kwang Sik;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.29-40
    • /
    • 2018
  • Even if a small amount of arsenic (As) is entering to small agricultural reservoir from upper streams, small agricultural reservoir becomes sensitive to changes in arsenic concentration depending on the water level in case of accumulation continuously because of its scale. If we want to manage arsenic concentration in small agricultural reservoir, it is very important to understand arsenic changes in agricultural reservoir. In spite of the fact that modeling is the most accurate method for analyzing arsenic concentration changes in small agricultural reservoirs, but, it is difficult to monitor arsenic change everyday. So, if data is prepared for modeling arsenic changes, water quality modeling is more effective than monitoring. Therefore, in this study, arsenic concentration changes was simulated and arsenic concentration change mechanism in small reservoir was analyzed using hydrological and water quality monitoring data and by conducting EFDC (Environment Fluid Dynamics Code)-WASP (Water Quality Analysis Simulation Program) linkage. EFDC-WASP coupling technique was very useful for modeling arsenic changes because EFDC can consider hydrodynamic and WASP can perform arsenic concentration simulation, separately. As a results of this study, during dry season, As concentration was maintained relatively high arsenic concentrations. Therefore, water level control will be needed for managing As concentration of reservoir.

Water Transportation and Stratification Modification in the Andong-Imha Linked Reservoirs System (안동호-임하호 연결에 따른 물 이동과 수온성층 변화)

  • Park, Hyeung-Seok;Chung, Se-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.31-43
    • /
    • 2014
  • Recently, Andong Reservoir and Imha Reservoir located in Nakdong River basin (Korea) are being connected by a tunnel (length 2km, diameter 5.5m) for a conjunctive use. The objectives of this study were to construct a two dimensional(2D) laterally-averaged model for two reservoirs, and examine the effects of connection on the water transportation and temperature stratification in the reservoirs. The 2D models for each reservoir were calibrated using field data obtained in 2006, and applied to the linked system for the year of 2002 when a severe flood intruded into Imha Reservoir during the typhoon Rusa. Simulation results showed that 364 million $m^3$ of water can be conveyed from Imha to Andong, while 291 million $m^3$ of water from Andong to Imha after connection. It resulted in 1.38 m increase of annual averaged water level in Andong Reservoir, whereas 3.75 m decrease in Imha Reservoir. The structures of thermal stratification in both reservoirs were influenced in line with the flow exchanges. In Andong Reservoir, the location of thermocline moved upward about 10 m compared to an independent operation. The results imply that the persistent turbidity issue of Imha Reservoir might be shifted to Andong Reservoir during a severe flood event after connection.

Development of a Hydrologic System for Simulating Daily Water Storage in an Estuary Reservoir

  • Noh, Jae-Kyoung
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.1-10
    • /
    • 2003
  • In order to analyze the water supply capacity in an estuary reservoir, a system composed of daily water balance model and daily inflow model was developed. The agricultural water demands to paddy fields, domestic water demands to residential areas, and industrial water demands to industrial complexes were considered in this daily water balance model. Likewise, the outflow volume through sluice gates and inside the water level at the start of the outflow was initially conditioned to simulate estuary reservoir storage. The DAWAST model (Noh, 1991) was selected to simulate daily estuary reservoir inflow, wherein return flows from agricultural, domestic, and industrial water were included to simulate runoff. Using this system, the water supply capacity in the Geum River estuary reservoir was analyzed.

Fuzzy Theory and Reservoir Operation Guidelines for Agricultural Purposes (퍼지이론과 관개용 저수지의 조작)

  • 정하우;이남호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.45-51
    • /
    • 1991
  • The objective of this paper is to show how the fuzzy sets theory can be applied to the reservoir operation guidelines for agricultural purposes. The concepts of the theory has been resented as a new tool for the decision problems which contains fuzziness and it's application can be found in operations research, expert systems, robotics, fuzzy computers, and pattern recognition. The fuzzy control system for the reservoir operation composed of a set of reservoir operation rules and a fuzzy inference engine was built. Water demand for paddy fields, water availability, and inflow to a reservoir were selected as main factors which determine the magnitude of reservoir release. The behavior of the control system was evaluated for different level of water demand and the results seemed to be reasonable.

  • PDF

Analysis of Sediment Contamination Levels in the Giheung Reservoir (기흥저수지 퇴적물에 대한 오염도 분석)

  • Oh, Kyoung-Hee;Kim, Sung-Jin;Cho, Young-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.26-32
    • /
    • 2018
  • In order to analyze the effects of sediment on the occurrence of algal bloom on the Giheung Reservoir, the contamination levels of sediments were evaluated. The concentrations of various organic compounds (ignition loss), as well as the total nitrogen, total phosphorus, and heavy metals (Zn, Cr, Co, Ni, Pb, As, Hg, Cd) were analyzed in the sediments taken at eighteen sites of the reservoir. The concentrations of ignition loss and total nitrogen tended to increase from upstream to downstream, and ranged from 4.38 to 12.93% and 2,153 to 4,723 mg/kg, respectively. Heavy metals were in the order of Zn>Cr>Co>Ni>Pb>As>Hg, and the contamination level of the heavy metals was not high as a whole. The concentrations of the total phosphorus were in the range of 765 ~ 3,238 mg/kg, which exceeded the contamination level of the "Sediment Quality Assessment Guideline of River and Lake Sediment (Rule No. 2015-687 of the National Institute of Environmental Research, Korea)" at two upstream sites, four downstream sites, and all downstream sites. These results indicated that the pollution level of the total phosphorus, which is the main factor related to algal bloom, was found to be serious. Therefore, it is necessary to establish a countermeasure for sediment management in order to control the algal bloom which occurs periodically in the reservoir.

Public Perceptions and Support of Environmental Management in the Source Area of Drinking Water for Beijing, China

  • Wang, Xiaoyan;Feng, Qing;Zhang, Yafan;Duan, Shuhuai;Novotny, Vladimir
    • Environmental Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • Based on a survey of citizens and data analysis on the environmental status of the Miyun Reservoir watershed, China, the environmental awareness of citizens residing in the watershed and the impacting factors are discussed. The contingent valuation method was used to evaluate the willingness of villagers to pay (WTP) for abatement of the rural domestic pollution and to assess the intensity level of the villagers' desire for improving environmental conditions in the Miyun Reservoir watershed. It was found that rural watershed residents had a fundamental cognitive understanding of the pollution status and protection measures of the Miyun Reservoir. However, based on the survey, local residents had only a small interest in their participation to improve the environmental status of the reservoir, despite their general attitude to protect the reservoir being very positive. Gender and family income were closely associated with the overall attitudes of the population. Public media are the most preferable means for conveying knowledge of environmental protection to people living in the watershed. Increasing the educational level, along with income, are the best ways to enhance the desire of the villagers to improve the environmental quality and management.

Seismic analysis of dam-foundation-reservoir coupled system using direct coupling method

  • Mandal, Angshuman;Maity, Damodar
    • Coupled systems mechanics
    • /
    • v.8 no.5
    • /
    • pp.393-414
    • /
    • 2019
  • This paper presents seismic analysis of concrete gravity dams considering soil-structure-fluid interaction. Displacement based plane strain finite element formulation is considered for the dam and foundation domain whereas pressure based finite element formulation is considered for the reservoir domain. A direct coupling method has been adopted to obtain the interaction effects among the dam, foundation and reservoir domain to obtain the dynamic responses of the dam. An efficient absorbing boundary condition has been implemented at the truncation surfaces of the foundation and reservoir domains. A parametric study has been carried out considering each domain separately and collectively based on natural frequencies, crest displacement and stress at the neck level of the dam body. The combined frequency of the entire coupled system is very less than that of the each individual sub-system. The crest displacement and neck level stresses of the dam shows prominent enhancement when coupling effect is taken into consideration. These outcomes suggest that a complete coupled analysis is necessary to obtain the actual responses of the concrete gravity dam. The developed methodology can easily be implemented in finite element code for analyzing the coupled problem to obtain the desired responses of the individual subdomains.

Effects of the water level reduction and the flow distribution according to change of the side weir location in detention reservoir (홍수조절지 횡월류위어의 위치 변화에 따른 수위 저감 및 유량 분담 효과)

  • Seong, Hoje;Park, Inhwan;Rhee, Dong Sop
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.555-564
    • /
    • 2018
  • The detention reservoir is a hydraulic structure that constructs a levee on the inland of river and sets up side weir in a section of the levee, and this facility stores a part of the flood volume in case of a flood event over a certain scale. In order to optimize the operation of detention reservoir, it is necessary to review the linkage with existing facilities in the river. In this study, the effect of water level reduction and the flow distribution was analyzed according to the location of the side weir in the detention reservoir considering the run-of-the-river gate. Two radial gates were installed in the experimental channel, and the water level in channel and the overflow of weir were measured by moving the location of the side weir upstream from the gate. As a results of experiment, it was confirmed that the water level reduction is more remarkable as the location of the side weir was closer to the gate, and the effect of flow distribution is not greatly changed. When two or more side weirs were operated, it is confirmed that the sufficient storage space was secured and the water level reduction effect with the location of the side weir is not large. In addition, the water level reduction rate according to the location of the side weir was estimated by empirical formula and it is provided as basic data that can be used in the planning of the detention reservoir.