1 |
Burman, A., Nayak, P., Agrawal, P. and Maity, D. (2012), "Coupled gravity dam-foundation analysis using a simplified direct method of soil-structure interaction", Soil Dyn. Earthq. Eng., 34(1), 62-68. https://doi.org/10.1016/j.soildyn.2011.10.008.
DOI
|
2 |
Chopra, A.K. (2007), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice Hall of India, New Delhi, India.
|
3 |
Clough, R.W. and Chopra, A.K. (1979), Earthquake Response Analysis of Concrete Dams, in Structural and Geotechnical Mechanics, Prentice-Hall, 378-402.
|
4 |
Clough, R.W. and Penzien, J. (1975), Dynamics of Structures, McGraw-Hill, New York, U.S.A.
|
5 |
Felippa, C.A. and Park, K.C. (1980), "Staggered transient analysis procedures for coupled mechanical systems: Formulation", Comput. Meth. Appl. Mech. Eng., 24(1), 61-111. https://doi.org/10.1016/0045-7825(80)90040-7
DOI
|
6 |
Gogoi, I. and Maity, D. (2006), "A non-reflecting boundary condition for the finite element modelling of infinite reservoir with layered sediment", Adv. Water Resour., 29(10), 1515-1527. https://doi.org/10.1016/j.advwatres.2005.11.004.
DOI
|
7 |
Gorai, S. and Maity, D. (2019), "Seismic response of concrete gravity dams under near field and far field ground motions", Eng. Struct., 196, 109292. https://doi.org/10.1016/j.engstruct.2019.
DOI
|
8 |
Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2018), "Fluid-structure interaction system predicting both internal pore pressure and outside hydrodynamic pressure", Coupled Syst. Mech., 7(6) 649-668. https://doi.org/10.12989/csm.2018.7.6.649.
DOI
|
9 |
Hariri-Ardebili, M.A., Seyed-Kolbadi, S.M. and Kianoush, M.R. (2016), "FEM- based parametric analysis of a typical gravity dam considering input excitation mechanism", Soil Dyn. Earthq. Eng., 84, 22-43. DOI: https://doi.org/10.1016/j.soildyn.2016.01.013.
DOI
|
10 |
Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2019), "Theoretical formulation and seamless discrete approximation for localized failure of saturated poro-plastic structure interacting with reservoir", Comput. Struct., 214, 73-93. https://doi.org/10.1016/j.compstruc.2019.01.003.
DOI
|
11 |
Ibrahimbegovic, A. and Wilson, E.L. (1992), "Efficient computational procedures for systems with local nonlinearities", Eng. Comput., 9, 385-398.
DOI
|
12 |
Ibrahimbegovic, A. and Ademovic, N. (2019), Nonlinear Dynamics of Structures Under Extreme Transient Loads, CRC Press.
|
13 |
Ibrahimbegovic, A. and Wilson, E.L. (1990), "A methodology for dynamic analysis of linear structure-foundation systems with local non-linearities", Earthq. Eng. Struct. Dyn., 19(8), 1197-1208. https://doi.org/10.1002/eqe.4290190809.
DOI
|
14 |
Jharomi, H.Z., Izzuddin, B.A. and Zdravkovic, L. (2007), "Partitioned analysis of nonlinear soil-structure interaction using iterative coupling", Interact. Multi-scale Mech., 1(1), 33-51. https://doi.org/10.12989/imm.2008.1.1.033.
|
15 |
Jharomi, H.Z., Izzuddin, B.A. and Zdravkovic, L. (2009), "A domain decomposition approach for coupled modelling nonlinear soil-structure interaction", Comput. Meth. Appl. Mech. Eng., 198(33), 2738-2749. https://doi.org/10.1016/j.cma.2009.03.018.
DOI
|
16 |
Kassiotis, C., Ibrahimbegovic, A. and Matthies, H., (2010), "Partitioned solution to fluid-structure interaction problem in application to free-surface flow", Eur J. Mech. Part B Fluids, 29(6), 510-521, https://doi.org/10.1016/j.euromechflu.2010.07.003.
DOI
|
17 |
Kellezi, L. (2000), "Local transmitting boundaries for transient elastic analysis", Soil Dyn. Earthq. Eng., 19(7), 533-547. https://doi.org/10.1016/S0267-7261(00)00029-4
DOI
|
18 |
Kucukarslan, S. (2004), "Dynamic analysis of dam-reservoir-foundation interaction in time domain", Comput. Mech., 33, 274-281, https://doi.org/10.1007/s00466-003-0528-y.
DOI
|
19 |
Khazaee, A. and Lotfi, V. (2014), "Application of perfectly matched layers in the transient analysis of dam-reservoir systems", Soil Dyn. Earthq. Eng., 60, 51-68. https://doi.org/10.1016/j.soildyn.2014.01.005.
DOI
|
20 |
Kramer, S.L. (1996), Geotechnical Earthquake Engineering, Prentice Hall, New Jersey, U.S.A.
|
21 |
Leger, P. and Boughoufalah, M. (1989), "Earthquake input mechanisms for time-domain analysis of dam-foundation system", Eng. Struct., 11(1), 33-46. https://doi.org/10.1016/0141-0296(89)90031-X.
|
22 |
Lokke, A. and Chopra, A.K. (2017), "Direct finite element method for nonlinear analysis of semi-unbounded dam-water-foundation rock systems", Earthq. Eng. Struct. Dyn., 46(8), 1267-1285. https://doi.org/10.1002/eqe.2855.
DOI
|
23 |
Lokke, A. and Chopra, A.K. (2018), "Direct finite element method for nonlinear earthquake analysis of 3-dimensional semi-bounded dam-water-foundation rock systems", Earthq. Eng. Struct. Dyn., 47(5), 1309-1328. https://doi.org/10.1002/eqe.3019.
DOI
|
24 |
Lokke, A. and Chopra, A.K. (2019), "Direct finite element method for nonlinear earthquake analysis of concrete dams: Simplification, modeling, and practical application", Earthq. Eng. Struct. Dyn., 48(7), 818-842. https://doi.org/10.1002/eqe.3150.
DOI
|
25 |
Maity, D. and Bhattacharya, S.K. (2003), "A parametric study on fluid-structure interaction problems", J. Sound Vib., 263, 917-935. https://doi.org/10.1016/S0022-460X(02)01079-9.
DOI
|
26 |
Mandal, A. and Maity, D. (2016), "Finite element analysis of dam-foundation coupled system considering cone type local non-reflecting boundary condition", J. Earthq. Eng., 20(3), 428-446. https://doi.org/10.1080/13632469.2015.1085464.
DOI
|
27 |
Papazafeiropoulos, G., Tsompanakis, Y. and Psarropoulos, P.N. (2011), "Dynamic interaction of concrete dam-reservoir-foundation: Analytical and numerical solutions", Comput. Meth. Appl. Sci., 21, 978-994. https://doi.org/10.1007/978-94-007-0053-6_20.
|
28 |
Miquel, B. and Bouaanani, N. (2013), "Accounting for earthquake induced dam-reservoir interaction using modified accelerograms", J. Struct. Eng., 139(9), 1608-1617. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000726.
DOI
|
29 |
Mitra, S. and Sinhamahapatra, K.P. (2008), "2D simulation of fluid-structure interaction using finite element method", Fin. Elements Anal Des., 45(1), 52-59, DOI: https://doi.org/10.1016/j.finel.2008.07.006.
DOI
|
30 |
Mohammadi, L.K., Amiri, J.V., Neya, B.N. and Davoodi, M. (2009), "Evaluation of Eulerian and Lagrangian method in analysis of concrete gravity dam including dam water foundation interaction", Int. J. Civ. Environ. Struct. Construct. Architect. Eng., 3(10), 427-433. https://doi.org/10.5281/zenodo.1061719.
|
31 |
Reddy, B.V., Burman, A. and Maity, D. (2008), "Seismic response of concrete gravity dams considering foundation flexibility", Indian Geotech. J., 38, 187-203.
|
32 |
Rizos, D.C. and Wang, Z. (2002), "Coupled BEM-FEM solutions for direct time domain soil-structure interaction analysis", Eng. Anal. Boundary Elements, 26(10), 877-888. https://doi.org/10.1016/S0955-7997(02)00057-7.
DOI
|
33 |
Samii, A. and Lotfi, V. (2007), "Comparison of coupled and decoupled modal approaches in seismic analysis of concrete gravity dams in time domain", Fin. Elements Anal. Des., 43(13), 1003-1012. https://doi.org/10.1016/j.finel.2007.06.015.
DOI
|
34 |
Samii, A. and Lotfi, V. (2012), "Application of H-W boundary condition in dam-reservoir interaction problem", Elements Anal. Des., 50, 86-97. https://doi.org/10.1016/j.finel.2011.08.025.
DOI
|
35 |
Westergaard, H.M. (1933), "Water pressures on dams during earthquakes", T. ASCE, 98, 418-472.
|
36 |
Sharan, S.K. (1992), "Efficient finite element analysis of hydrodynamic pressure on dams", Comput. Struct., 42(5), 713-723. https://doi.org/10.1016/0045-7949(92)90183-Z.
DOI
|
37 |
Sommerfeld, A. (1949), Partial Differential Equations in Physics, Academic Press, New York, U.S.A.
|
38 |
Su, J. and Wang, Y. (2013), "Equivalent dynamic infinite element for soil-structure interaction", Fin. Elements Anal. Des., 63, 1-7. https://doi.org/10.1016/j.finel.2012.08.006.
DOI
|
39 |
Wolf, J.P. (1985), Dynamic Soil-Structure Interaction, Prentice Hall, Englewood Cliffs, New Jersey, U.S.A.
|
40 |
Yazdchi, M., Khalili, N. and Valliappan, S. (1999), "Dynamic soil-structure interaction analysis via coupled finite -element-boundary-element method", Soil Dyn. Earthq. Eng., 18, 499-517. https://doi.org/10.1016/S0267-7261(99)00019-6.
DOI
|
41 |
Zeinkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2005), The Finite Element Method: Its Basis and Fundamentals, Butterworth- Heinemann, Elsevier.
|