DOI QR코드

DOI QR Code

Analysis of Environmental Factors of Geomorphology, Hydrology, Water Quality and Shoreline Soil in Reservoirs of Korea

우리나라 저수지에서 지형, 수문, 수질 및 호안 토양 환경요인의 분석

  • Received : 2013.01.28
  • Accepted : 2013.07.02
  • Published : 2013.09.30

Abstract

In order to understand shoreline environment characteristics of Korean reservoirs, the interrelationships between environmental factors of geomorphology, hydrology, water quality and shoreline soil were analyzed, and the reservoir types were classified according to their environmental characteristics in the 35 reservoirs selected by considering the purpose of dam operations and annual water-level fluctuations. Geomorphological and hydrological characteristics of reservoirs were correlated with the altitude and the size scale of reservoirs. The annual range of water level fluctuation showed a wide variation from 1 m to 27 m in the various reservoirs in Korea. The levels of eutrophication of most reservoirs were mesotrophic or eutrophic. From the result of the soil texture analysis, sand contents were high in reservoir shorelines. Range, frequency and duration of water-level fluctuation were distinctive from the primary function of reservoirs. Flood control reservoirs had a wide range with low frequency and waterpower generation reservoirs had a narrow range with high frequency in the water-level fluctuation. According to the result of CART (classification and regression tree) analysis, the water quality of reservoirs was classified by water depth, range of water-level fluctuation and altitude. The result of PCA (principal component analysis) showed that the type of reservoirs was classified by reservoir size, water-level fluctuation, water quality, soil texture and soil organic matter. In conclusion, reservoir size, the water-level fluctuation, water quality and soil characteristics might be major factors in the environment of reservoir shorelines in Korea.

우리나라 저수지에서 호안 환경의 특성을 파악하기 위하여, 수위변동폭과 이용 목적에 따라서 35개 저수지를 선정하여 지형, 수문, 수질 및 토양 환경요인을 조사하여 이들 사이의 관계를 분석하고 환경 특성에 따라 저수지의 유형을 구분하였다. 저수지의 지형적, 수문적 특성은 그 조성된 곳의 환경과 크기에 따라서 다양하였다. 저수지의 연수위변동폭은 1~27 m로서 변이가 컸다. 저수지의 수질은 대부분 중영양 혹은 부영양 상태이었다. 호안의 토양 환경은 모래 함량이 많았다. 저수지의 수위변동폭, 빈도 및 기간은 저수지의 이용 목적에 따라서 독특한 특성을 보였다. 홍수조절용 저수지는 수위변동 폭이 크고 빈도는 낮았으며 수력발전용 저수지는 수위변동 폭이 크고 빈도가 높았다. 회귀분류 나무(CART) 분석 결과에 의하면 저수지의 수질은 수심, 수위변동폭 및 고도에 의하여 구분되었다. 주요인분석(PCA)의 결과에 의하면 환경요인에 의하면 저수지의 유형은 저수지의 크기, 수위변동폭, 수질 및 토양의 토성과 유기물 함량에 의하여 구분되었다. 이상의 결과를 종합하면, 우리나라 저수지의 호안에서 저수지의 크기, 수위변동폭, 수질 및 호안 토양의 특성이 중요한 환경요인인 것으로 판단되었다.

Keywords

References

  1. Abrahams, C. 2005. The ecology and management of drawdown zones. British Wildlife 16: 395-402.
  2. Abrahams, C. 2006. Sustainable shorelines: the management and re-vegetation of drawdown zones. Journal of Practical Ecology and Conservation 6: 37-51.
  3. Backeus, I. 1993. Ecotone versus ecocline: vegetation zonation and dynamics around a small reservoir in Tanzania. Journal of Biogeography 20: 209-218. https://doi.org/10.2307/2845672
  4. Breiman, L., J. Friedman, C.J. Stone and R.A. Olshen. 1984. Classification and Regression Trees. Wadsworth, Belmont, CA, USA.
  5. Casanova, M.T. and M.A. Brock. 2000. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology 147: 237-250. https://doi.org/10.1023/A:1009875226637
  6. Dean, W.E., Jr. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44: 242-248.
  7. Harrell, F.E., Jr. 2012. Package 'Hmisc' . (http://biostat.mc. vanderbilt.edu/Hmisc).
  8. Hill, N.M., P.A. Keddy and I.C. Wisheu. 1998. A hydrological model for predicting the effects of dams on the shoreline vegetation of lakes and reservoirs. Environmental Management 22: 723-736. https://doi.org/10.1007/s002679900142
  9. Hofmann, H., A. Lorke and F. Peeters. 2008. Temporal scales of water-level fluctuations in lakes and their ecological implications. Hydrobiologia 613: 85-96. https://doi.org/10.1007/s10750-008-9474-1
  10. Hutchinson, G.E. 1957. A Treatise on Limnology. Vol. 1. Geography, Physics and Chemistry. Wiley, New York, USA.
  11. Jeon, J.H., C.G. Yoon, J.H. Ham, H.I. Kim and S.J. Hwang. 2002. Effects of physical parameters on water quality in agricultural reservoirs. Korean Journal of Limnological Society 35: 28-35.
  12. Jeong, J.J. 2005. An Experimental Study on the Restoration of the Flood Fluctuation Slopes of the Dam Reservoir. MS Thesis, Dankook University, Cheonan, Korea.
  13. Keddy, P. and L.H. Fraser. 2000. Four general principles for the management and conservation of wetlands in large lakes: The role of water levels, nutrients, competitive hierarchies and centrifugal organization. Lakes & Reservoirs: Research and Management 5: 177-185. https://doi.org/10.1046/j.1440-1770.2000.00111.x
  14. Keddy, P.A. 2010. Wetland Ecology: Principles and Conservation. Cambridge University Press, Cambridge, UK.
  15. Keddy, P.A. and A.A. Reznicek. 1986. Great Lakes vegetation dynamics: the role of fluctuating water level and buried seeds. Journal of Great Lakes Research 12: 25- 36. https://doi.org/10.1016/S0380-1330(86)71697-3
  16. KHNP. 2012. http://www.khnp.co.kr/. Korea Hydro and Nuclear Power Co., Seoul, Korea.
  17. Kim, B.C. 2010. Evaluation of Ecological Integrity in Lake Ecosystem. Eco-STAR Project, Chuncheon, Korea.
  18. Kim, H.J. and H.I. Kim. 2010. Water quality management of agricultural reservoirs considering effective water depth. Korean National Committee on Irrigation and Drainage Journal 17: 95-104.
  19. Kimmel, B.L. and A.W. Groeger. 1984. Factors controlling primary production in lakes and reservoirs: a perspective. Lake and Reservoir Management 1: 277-281. https://doi.org/10.1080/07438148409354524
  20. KRC. 2010. http://www.ekr.or.kr/. Korea Rural Community Co., Uiwang, Korea.
  21. KWRC. 2012. http://www.kwater.or.kr/. Korea Water Resources Co., Daejeon, Korea.
  22. Lee, G.Y., H.D. Kim, G.G. Jeong, K.H. Kim and O.J. Kwon. 2005. Study on the Planning of Water Resource Security by Redevelopment of Agricultural Reservoirs. Rural Research Institute, Ansan, Korea.
  23. Lee, J.Y., J.H. Lee, K.H. Shin, S.J. Hwang and K.G. An. 2007. Torphic State and Water Quality Characteristics of Korean Agricultural Reservoirs. Korean Journal of Limnological Society 40: 223-233.
  24. Leira, M. and M. Cantonati. 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia 613: 171-184. https://doi.org/10.1007/s10750-008-9465-2
  25. Naselli-Flores, L. and R. Barone. 2005. Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548: 85-99 https://doi.org/10.1007/s10750-005-1149-6
  26. Oksanen, J., F.G. Blanchet, R. Kindt, P. Legendre, P.R. Minchin, R.B. O' Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens and H. Wagner. 2012. Package 'vegan' , Community Ecology Package. (http://vegan.r-forge.rproject. org).
  27. OriginLab Corp. 2009. Origin. Northampton, MA, USA.
  28. R Core Team. 2012. R: A Language and Environment for Statistical Computing. Vienna, Austria. (http://www.Rproject. org).
  29. RAWRIS. 2012. http://rawris.ekr.or.kr/. Rural Agricultural Water Resource Information System, Uiwang, Korea.
  30. Riis, T. and I. Hawes. 2002. Relationships between water level fluctuations and vegetation diversity in shallow water of New Zealand lakes. Aquatic Botany 74: 133- 148. https://doi.org/10.1016/S0304-3770(02)00074-8
  31. SAS Institute Inc. 2009. SAS/STAT. SAS Institute Inc, Cary, NC, USA.
  32. Sheldrick, B.H. and C. Wang. 1993. Particle size distribution, p. 499-511. In: Soil Sampling and Methods of Analysis. (Carter, M.R. ed.). Canadian Society of Soil Science, Lewis Publishers, London, UK.
  33. Steel, J.T.A. and W. Rast. 1996. Reservoirs. Chapter 8. In: Water Quality Assessments - A Guide to Use of Biota, Sediments and Water in Environmental Monitoring. (Chapman, D. ed.). UNESCO/WHO/UNEP.
  34. Therneau, T., B. Atkinson and B. Ripley. 2012. Package 'rpart'. (http://cran.r-project.org).
  35. Thornton, K.W., B.L. Kimmel and F.F. Payne. 1990. Reservoir Limnology: Ecological Perspectives. Wiley, New York, USA
  36. WAMIS. 2012. http://www.wamis.go.kr/. Water Management Information System, Seoul.
  37. Wheal, C. 1991. Freshwater Pollution. UNEP Environment Library, No. 6. Nairobi, Kenya.
  38. WIS. 2012. http://water.nier.go.kr/. Water Information System, Seoul, Korea.
  39. Yoon, K.S., K.S. Lee, H.J. Kim and H.I. Kim. 2003. Classification and water quality management of agricultural reservoirs. Magazine of the Korean Society of Agricultural Engineers 45: 66-77.