• Title/Summary/Keyword: representations

Search Result 1,274, Processing Time 0.022 seconds

Pre-Service Teachers' Understanding of the Concept and Representations of Irrational Numbers (예비교사의 무리수의 개념과 표현에 대한 이해)

  • Choi, Eunah;Kang, Hyangim
    • School Mathematics
    • /
    • v.18 no.3
    • /
    • pp.647-666
    • /
    • 2016
  • This study investigates pre-service teacher's understanding of the concept and representations of irrational numbers. We classified the representations of irrational numbers into six categories; non-fraction, decimal, symbolic, geometric, point on a number line, approximation representation. The results of this study are as follows. First, pre-service teachers couldn't relate non-fractional definition and incommensurability of irrational numbers. Secondly, we observed the centralization tendency on symbolic representation and the little attention to other representations. Thirdly, pre-service teachers had more difficulty moving between symbolic representation and point on a number line representation of ${\pi}$ than that of $\sqrt{5}$ We suggested the concept of irrational numbers should be learned in relation to various representations of irrational numbers.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HC

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.34 no.4
    • /
    • pp.473-482
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeo-metric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_C$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HA

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.113-124
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_A$.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X5

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.32 no.3
    • /
    • pp.389-397
    • /
    • 2010
  • Exton introduced 20 distinct triple hypergeometric functions whose names are Xi (i = 1,$\ldots$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function $\Psi_2$, a Humbert function $\Phi_2$. The object of this paper is to present 25 (presumably new) integral representations of Euler types for the Exton hypergeometric function $X_5$ among his twenty $X_i$ (i = 1,$\ldots$, 20), whose kernels include the Exton function X5 itself, the Exton function $X_6$, the Horn's functions $H_3$ and $H_4$, and the hypergeometric function F = $_2F_1$.

PURE INJECTIVE REPRESENTATIONS OF QUIVERS

  • Hosseini, Esmaeil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.389-398
    • /
    • 2013
  • Let R be a ring and $\mathcal{Q}$ be a quiver. In this paper we give another definition of purity in the category of quiver representations. Under such definition we prove that the class of all pure injective representations of $\mathcal{Q}$ by R-modules is preenveloping. In case $\mathcal{Q}$ is a left rooted semi-co-barren quiver and R is left Noetherian, we show that every cotorsion flat representation of $\mathcal{Q}$ is pure injective. If, furthermore, R is $n$-perfect and $\mathcal{F}$ is a flat representation $\mathcal{Q}$, then the pure injective dimension of $\mathcal{F}$ is at most $n$.

AN EXTENSION OF THE EXTENDED HURWITZ-LERCH ZETA FUNCTIONS OF TWO VARIABLES

  • Choi, Junesang;Parmar, Rakesh K.;Saxena, Ram K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1951-1967
    • /
    • 2017
  • We aim to introduce a further extension of a family of the extended Hurwitz-Lerch Zeta functions of two variables. We then systematically investigate several interesting properties of the extended function such as its integral representations which provide extensions of various earlier corresponding results of two and one variables, its summation formula, its Mellin-Barnes type contour integral representations, its computational representation and fractional derivative formulas. A multi-parameter extension of the extended Hurwitz-Lerch Zeta function of two variables is also introduced. Relevant connections of certain special cases of the main results presented here with some known identities are pointed out.

ON REGULARITY OF SOME FINITE GROUPS IN THE THEORY OF REPRESENTATION

  • Park, Eun-Mi
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.773-782
    • /
    • 1994
  • Investigation of the number of representations as well as of projective representations of a finite group has been important object since the early of this century. The numbers are very related to the number of conjugacy classes of G, so that this gives some informations on finite groups and on group characters. A generally well-known fact is that the number of non-equivlaent irreducible representations, which we shall write as n.i.r. of G is less than or equal to the number of conjugacy classes of G, and the equality holds over an algebraically closed field of characteristic not dividing $\mid$G$\mid$. A remarkable result on the numbers due to Reynolds can be stated as follows.

  • PDF

ISOTROPY REPRESENTATIONS OF CYCLIC GROUP ACTIONS ON HOMOTOPY SPHERES

  • Suh, Dong-Youp
    • Bulletin of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.175-178
    • /
    • 1988
  • Let .SIGMA. be a smooth compact manifold without boundary having the same homotopy type as a sphere, which is called a homotopy sphere. Supose a group G acts smoothly on .SIGMA. with the fixed point set .SIGMA.$^{G}$ consists of two isolated fixed points p and q. In this case, tangent spaces $T_{p}$ .SIGMA. and $T_{q}$ .SIGMA. at isolated fixed points, as isotropy representations of G are called Smith equivalent. Moreover .SIGMA. is called a supporting homotopy sphere of Smith equivalent representations $T_{p}$ .SIGMA. and $T_{q}$ .SIGMA.. The study on Smith equivalence has rich history, and for this we refer the reader to [P] or [Su]. The following question of pp.A.Smith [S] motivates the study on Smith equivalence.e.

  • PDF

AN ARTINIAN RING HAVING THE STRONG LEFSCHETZ PROPERTY AND REPRESENTATION THEORY

  • Shin, Yong-Su
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.401-415
    • /
    • 2020
  • It is well-known that if char𝕜 = 0, then an Artinian monomial complete intersection quotient 𝕜[x1, …, xn]/(x1a1, …, xnan) has the strong Lefschetz property in the narrow sense, and it is decomposed by the direct sum of irreducible 𝖘𝖑2-modules. For an Artinian ring A = 𝕜[x1, x2, x3]/(x16, x26, x36), by the Schur-Weyl duality theorem, there exist 56 trivial representations, 70 standard representations, and 20 sign representations inside A. In this paper we find an explicit basis for A, which is compatible with the S3-module structure.

S/W Cinderella for Student's mental Representation about Non-Euclidean Geometry (비유클리드 기하의 정신적 표상을 위한 S/W Cinderella)

  • Kye Younghee;Shin Kyunghee
    • The Mathematical Education
    • /
    • v.44 no.2 s.109
    • /
    • pp.297-306
    • /
    • 2005
  • In this paper, we propose a computer environment class for student's mental representations about non-Euclidean geometry. Through the software Cinderella, students construct knowledge about non-Euclidean geometry and recognize differentness between Euclidean and non-Euclidean geometry. Also they recognize an existence of non-Euclidean geometry newly and its mental representations with images represented in Cinderella. In geometry class, we make students can use many representations systematically and can figure a visual internal image by emphasizing a transform process. And then students can reason about non-Euclidean geometry.

  • PDF