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ON REGULARITY OF SOME FINITE GROUPS
IN THE THEORY OF REPRESENTATION

EunMi CHor

1. Introduction

Investigation of the number of representations as well as of projective
representations of a finite group has been important object since the
early of this century. The numbers are very related to the number of
conjugacy classes of G, so that this gives some informations on finite
groups and on group characters. A generally well-known fact is that
the number of non-equivalent irreducible representations, which we shall
write as n.ir. of G is less than or equal to the number of conjugacy
classes of G, and the equality holds over an algebraically closed field of
characteristic not dividing |G|. A remarkable result on the numbers due
to Reynolds can be stated as follows.

LEMMA 1([6]). Let F be any field of Char F = p > 0, G be a
finite group, and let f € Z*(G,F*) be a 2-cocycle. The number of
non-equivalent irreducible projective f-representations, which we shall
write as n.i.p.r. of G over F is equal to the number of Dr-regular F-
(conjugacy) classes of p'-elements of G. Here I' = FfG is a twisted
group algebra of G over F.

The Dr-regularity condition is a generalized concept of f-regularity
going back to Schur (1904). The Dr-regular class is a union of F-classes.
If Fis a complex field, F-classes coincide with the conjugacy classes.
Thus Lemma 1, in this case, includes the Schur’s theorem in [7], further
if f =1 then the number of n.ir. of G equals that of conjugacy classes
of G. In [1] and [6], it was asked whether the number of n.i.r. is equal
to that of n.i.p.r. of G, and proved the following equivalent situations.
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LEMMA 2. With the same notations, the followings are equivalent.

1. The number of n.i.p.r. of G equals that of n.i.r. of G.

The number of n.i.r. of ' equals that of n.i.r. of G.

Every F-class of G is Dr-regular.

Every p-regular F-class of G 1s Dr-regular.

In the case that the order of 2-cocycle f is finite, kp(G.(f))
= r - kp(G), where r is any integer divisible by the order of f,
G.(f) is a generalized f-covering group and kr(G) is the number
of F-conjugacy classes of G, etc.

Ot N

Lemma 1 and 2 allow us to reduce the problem to determine the
number of n.i.p.r. to the determination of the number of certain classes
in group theory. Further computing the number of n.i.p.r. could provide
some knowledge to not-widely-known projective character theory.

The purpose of this paper is to find examples of G where all the
elements in G are Dr-regular. In fact, we shall construct some finite
groups on which all the F-classes and Dr-regular F-classes are calculated
and the numbers are same. In case of a cocycle f having finite order, the
similar constructions are made in [1]. A feature of this note is that the
Dr-regularity makes no use of 2-cocycle explicitly, rather it uses basis
elements of twisted group algebra.

This paper was revised under the suggestions of the referee. The
author would like to thank the referee for suggestions.

2. Dr mapping
Let w be a primitive t-th root of unity in F' for any positive integer

t not divisible by Char F'. Each automorphism o of F(w) which leaves
every element of F fixed is given by a map

(2.1) w — w™®)

where m(a) are integers relatively prime to t. Write I,(F') for the mul-
tiplicative group consisting of those integers m(«), taken modulo ¢, for
which (2.1) defines an automorphism of F(w) over F. Indeed I is iso-
morphic to Gal(F(w)/F), and is abelian. For example, I;(C) = {1}, and
L(Q) is a set of all residue classes (mod t) which are relatively prime to
t, where C is a complex field and Q is a rational field.
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A twisted group algebra I' = F/G for a finite group G over a field F
1s an F-algebra which has a basis {a, | g € G} with a;a, = f(g,9")agy
where f(g,¢') € F*. Following Yamazaki’s approach [10], we restate
the definition of twisted group algebra without using any 2-cocycle £, as
follows: a twisted group algebra over F is a triple (P, G,(T, )), where T’
is an F-algebra with identity 1r and (T'y) is a family of one-dimensional
F-subspaces of I indexed by G such that T' = ©§,¢¢Ty and I',T = TCggr
for all g,¢' € G. Of course I" has dimension |G|, we often refer loosely
to the algebra I' as a twisted group algebra and write T in place of
(T, G, (T'y)). Let E be an algebraic closure of F'. Then the Dr mapping
is defined by the following choices of integers. Firstly, choose integer n
divisible by exp(G). Write n = n,n,, where n, is a p-singular part of n
and n, is a p-regular part of n. If p = 0 then n = n,. For this n and
for each automorphism « in G = Gal(E/F), secondly, choose integers
m(a) such that wg,,/ = w::;(,a) for any n,-th root of unity wn, € E, and
m(a) =1 (mod n,). Indeed, set of all m(a)’s is In  (F).

Two elements ¢, z in G are called F'-conjugate if z = z_lgm(o‘_l)z
for some z € G, a € G. The F-conjugacy is an equivalence relation, so
G may be partitioned into F-classes. For the chosen n, ay = u(g)lr for
some u(g) € F* for each ¢ € G. Thirdly, choose an element v(g) in E
such that v(g)™ = u(g). Then Dr is defined by

(22)  agDr(a,z) =v(g)™" v(g) ™) a7y Ve,

for (a,z) € G x G, g € G. Certainly, Dr is a group action on I, and is
independent of the particular choices of integers n and m(a). The action
given on a4 € I' can be extended by linearity to one on ¥ = E ®p I
The orbits of Dr composed of p'-elements of G are precisely the F-
classes. An F-class L is Dr-reqular provided that there exists nonzero
q(g) € E, g € L, such that Dr acts as a permutation representation
on the elements ¢(¢)a, € I'®. In other words, an element g € G is
Dr-regular if and only if

(2.3) ayDr(a,z)=aqa, for (a,z) € G x G with x_]gm("_l)x =y.

For the later use, we add an easy lemma.
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LEMMA 3([6]). Let G = (g) be a finite cyclic group. Then the twisted
group algebra I' of G over F is F-algebra isomorphic to

F[X]/(X1Cl — u(g)), where aLGl = u(g)lr.

Proof. 1t is not hard to show that the map F[X] — T defined by
EAiX' = E)jay, for A; € F* is obviously a surjective F-algebra homo-
morphism with kernel (X1 — u(g)).

3. Finite cyclic groups of order 2* (k > 2)

Throughout the section, let G = (g) be a cyclic group of order
2% (k > 2) and (ag)zk = 22"7"11 where ag € Iy and (T,G,(Ty)) is
a twisted group algebra over Q, the rational field. The following is the
main theorem in this section.

THEOREM 1. Let G andT be defined as above. Then there are (k+1)
F-classes of G, and these are all Dr-regular F'-classes of G. Hence there
are (k + 1) n.ir. of I' and there are the same number of n.i.r. of G.

Note that there are 2* conjugacy classes of G.
Proof. Choose n = 2% and choose v(g) in an algebraic closure of Q as

1\ 1/n
an n-th root (u(g))l/" = (22k ) = /2. According to the remark in

[6, Section 6], we can take a smaller finite extension field E of Q which
has the following properties on E: E is a normal algebraic extension of
F, E contains a primitive n-th root of unity w, = w as well as v(g) for
all g € G, and FE is a splitting field for E @ I'. For this reason we can
choose E as E = Q(+/2,w). For the sake of clarity, we divide the proof

into some lemmas.

LEMMA 4. The group Gal(E/F) is isomorphic to Zyx-» & Z, with
two generators of order 2¥~% and 2.

Proof. Since w? g (u)2k_3)_l = /2, the extension field Q(V2,w) is
equal to Q(w) which is a splitting field of X2 —1 ¢ Q[X]. Further, Q(w)

is the cyclotomic extension of @ of order 2F and [Q(w) : Q] = ¢(2F)
2k=1 for Euler phi-function ¢. Therefore

Gal(Q(w)/Q) = Zpr-2 @ 2o,
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with two generators ¢ and r such that w’ = w? and w™ = w21 and
o(c) =252 o(r)=2.
We now consider the set of all m(a), a € Gal(Q(w)/Q), which we

know this is equal to I,(Q), n = 2F. Let r = 2¥~2. By modulo 2¥, we
observe the following:

m(l)=1, m(o)=3, m(c?)=3%,..., m(o" V)= 31,
m(r) = 2k 1= -1, m(oT) = 3(2k -1)= -3,
m(o?r)=-3% ..., m(e"ir)=(2* - 1)37 1 = -3,
here we have used the fact that m(aa') = m(a)m(a’) = m(d'a)

(mod 2*%) for any «, o' € Gal(Q(w)/Q). Then
IN(Q) = {1?3732’ s ’3r——17_1, _37 *327 sy __31--—1}‘

This is congruent modulo 2* to {1,3,...,2%¥ — 1}, in some order.

We now compute a;,Dr(a,z) for (a,z) € Gal(Q(w)/Q) x G.

LEMMA 5. Let r = 2¥=2. The Dr(a,z) act like permutation repre-
sentations on the independent set

3 32 3=t -1 -3 -3? -3t
{ag,ag.ay , ... ya, a4, ,a7% a7, ... yay }.

Proof. Since G = (g), we have agia, = agia, forany 0 <4, j < |G,
and this yields a simplified formula of Dr(a,z) (compare to (2.2)) that

agDr(a,r) = \/ﬁa_lﬁ_m(a—l)(zg‘(a-l).
On the other hand, for the two generators ¢ and r,
V2 =¥ (w3-2"'3)—~1 = /73,
Vo = (w2*‘3)~1 +w2k—3 — V2,
hence,for 1 <:<r—-1and 0<j <1,

ottt . \/5»—»—\/5, ifi: odd; o't : \/iiH\/é—a if i: even .
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By adding up all the informations above, we, therefore have,
agDr(l,z) = a; where 1 is the identity of Gal(Q(w)/Q)

a = ——a

agDF(U_lax)z\/ém(a)ag 2 9 2%y

agDp('r"l,ac) = \/5\/5(19_1 = 2a;1
71 r—1
agDr ((ar‘lr)”l,x) = 20 +1)/2ag_3 ,
this proves Lemma 5.
Hence, the orbit of Dy, which is an F-class of g € G 1s
2 —_ —- 2 _ar—1
Q={g,¢%9¢" ... ¢" L9 ¢ 90,97 )

Moreover, all elements in Q are distinct so that Q| = 25!, hence by

r—1

reordering, Q can be represented as C; = {g,¢°, ... ,gzk_l}, whence this
1s a Dp-regular F-class containing g.

LEMMA 6. There are (k+1) orbits of Dr. Further there are the same
number of Dr-regular F-classes of G.

Proof. Since G is cyclic, (a;)'Dr(a,z) = (agDr(a,;z:))l for all 0 <
i < |G| {[6, Theorem 4 (c)]), and some calculations using Lemma 5 yield
all the other orbits of Dr:

Cqr = {gz,ge, .. ,gzk_2}, Cos = {g4, o ,gzk—QZ}, ce

Cormr =1{g" '}, Ci={1}.
Of course, |Ci| = 1, [C4| = 2571, |Cpe| = 2872, and |Cg2k_1l = 1.
Since |Cy| + kil ICpai| = 2% @ is partitioned by all these orbits. Further
since Dr ac‘cls= (;ike a permutation representation, all of these orbits are
Dr-regular F-classes. This proves Lemma 6.

Hence there are (k + 1) n.i.p.r. of G and there are the same number
of n.i.r. of G. This completes the proof of Theorem 1.
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4. Remarks and examples

(1) Let G = (g), o(g) = 8, and a¥ = 2*1y. Then T is isomorphic as
a Q-algebra to Q[X]/(X?® — 2%) by Lemma 3, and an irreducible factor-
ization in Q[X] is

X% -2 = (X - 2) (X% +2)(X% - 2X + 2)(X2 +2X +2).

Hence T" is the direct sum of 4 fields, accordingly the number 4 gives the
number of irreducible Q-representations of I'. By Lemma 1, there are
also the same number of Dr-regular orbits.
Now for the Dr(a, z) mapping, we choose n = 8, v(g) = v/2 and let
w be an 8-th root of unity, i.e., w = (1 4+ 7)/v/2. Take a suitable finite
extension E of Q to be E = Q(w,v2). Then Gal(E/Q) is generated by
two elements ¢ and 7, where ¢ interchanges +: and fixes +1/2, and
fixes i and interchanges +v/2. Thus m(o) = 7, m(r) = 5 (mod 8),
and
1, 1 -1 1,
ag(DF(UT,.’IJ)) = (gag)Dp(T,m) = é-(agDr(’r,z)) = ——§a9
for all ayg € T', z € G. A little more calculation like this shows that all
Dr(a,z), a € Gal(E/Q) act on the independent set {ag,—%ag,—iag,
—%a;} as permutations. Hence the orbit {g,¢%,¢° ¢"} is Dp-regular.
The other orbits {g2,¢°%}, {g*} and {1} are more easy to check.

(2) Let G = (g), o(g) = 8, and aj = 3*1r. This example will show the
failure of the Dr-regularity. Indeed, X® —3* = (X2 -3)(X2%43)(X*+9)
is the irreducible factorization in Q[X], thus [ has 3 direct summands.
Hence there are 3 irreducible Q-representations of I', and 3 Dr-regular
orbits.

Using the language Dr(a, z)-regular, choose n = 8 and v(g) = (3*)'/8
= /3. Choose E = Q(w,v(g)) where w is an 8-th root of unity. Then
E is isomorphic to Q(7,v/2,4/3), thus Gal(E/Q) is generated by three
elements 01, oy and o3 where oy, (k = 1,2, 3) interchanges the element
of the k-th of those pairs +i, +/2, ++/3 and fixes the elements of the
other two pairs. Therefore, for any z € G

1 1
a’gDF(alvx) = ﬁa:‘;’ agDF(U%x) = §a37 (lgD]"(Cfg,l‘) = —ay4.
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The fact a,Dr(03,z) = —a, says that o3 does not act like a permutation
on the orbit containing g for any basis consisting of scalar multiples of

ag, az, ag, a;; hence the orbit is not regular.

(3) The condition k¥ > 2 in Theorem 1 is necessary. In the case
k=2 ie., a‘; = 2%1p, we may take E = Q(v(g),ws) = Q(+/2,i). But
for one generator 0 € Gal(E/Q) which send v/2 to —v/2, and ¢ to 1,

we have w;n(a) = wy so that m(o) = 1 (mod 4). Hence a,Dr(c,z) =

—ﬁ/ﬁag = —ay; this shows that o does not act like a permutation on
the orbit containing g. This is not a regular orbit.

5. Application to dihedral group

For any 2-cocycle f € Z%(G,A), A any G-module with trivial G-
action, it was proved in [3] that f can be considered as a normalized
2-cocycle; that is, f(g1,¢92) = 1 whenever one of the ¢g; ( = 1,2) is 1.
According to [9, Proposition 1], when G is a semi-direct product N x T
of a normal subgroup N and a subgroup T, f can be normalized up to
coboundaries on f(N,T) =1 hence f(nt,n't") = f(t,t)f(t,n)f(n','n’)
for n,n' € N and t,#' € T. Such f is called a normal 2-cocycle, and thus
f on G is determined uniquely by f ‘NxN, f |T><T and f ITxN'

As an application, it is possible to give other groups G where all
elements of G are Dr-regular.

THEOREM 2. Let G be a dihedral group (c,d | = d =1dc =
¢~ 1d ), with a generator c of the type (ac)?’c = 22""" 11, where {ag] g €
G} is a basis of twisted group algebra I' of G over F = Q. Then there
are (k + 3) Q-classes of G and they are all Dr-regular Q-classes of G.

Proof. Since G is a semidirect product {c¢) x (d}, the 2-cocycle f on
G can be normalized and determined by restrictions f ’(C)MC), f I(d)x(d)
and f |(d)x(c>. Since f ’<d>x(d> is a normalized 2-cocycle in Z2((d), Q*),
we may suppose that f(d,d) = f |<d>x(d) (d,d) = --1, so that (ag)? =
—1r. Similarly, (azi¢4)* = —1p for all 1 <1 < 2F,

Let n = 2%, the exp G. Then (a,)" = 92t~ 1r yields that an n-th root

v(c) of u(c) = 22°"" can be chosen as v/2. Since (aqig)" = 1r, we may
also choose v(c'd) as a primitive n-th root of unity w. As an algebraic



On regularity of some finite groups in the theory of representation 781

normal extension E of Q to contain both v/2 and w, and to be a splitting
field for G, we may now take E as Q(\/i,w) which is of course equal to
@(w). Hence the same situations in Lemma 4 prevail for this case that
Gal(E/Q) has two generators o of order 252 and 7 of order 2, and
I,(Q) = {m(a) | « € Gal(E/Q)} = {1,3,5,...,2F — 1}

In similar way as in Lemma 5, it is not hard to find all F-classes of
G. That is, there are (k +3) F-classes of G:

k_ k__ k-1
Co={c,...,c* 1}, Ca={c2...,c 2},...,Cc2k—1:{62 }

G ={1}, Ca= {d’czd""’czk_zd}v Cea = {cd, Pd, . .. ,czk'ld}.

bl

Some computations involving Dr(o, z) show that Dy acts like a permu-
tation representation on these classes, thus all of these are Dp-regular
F-classes. This completes the proof.

We note that there are 4 + (2% — 2)/2 = 2¥=1 + 3 conjugacy classes of
G.
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