• Title/Summary/Keyword: reporter cell line

Search Result 88, Processing Time 0.033 seconds

Effects of Constitutive Androstane Receptor (CAR) on PBRU Transactivation of CYP2B Gene in Different Culture Cell Types: Comparison Between Hep G2 and COS-cells (배양세포의 Type에 따른 Constitutive Androstane 수용체 (CAR)의 CYP2B PBRU 전사활성 효과: Hep G2와 COS 세포의 비교)

  • 민계식
    • Journal of Life Science
    • /
    • v.13 no.3
    • /
    • pp.324-332
    • /
    • 2003
  • The objective of this study was to examine if transient transfection of CAR can transactivate CYP2B1 PBRU reporter gene in COS cells in which the endogenous CYP2B1 gene is not induced by PB. In non-transfeced cells of both Hep G2 and COS, the endogeneous expression of CAR was not detected by antibody against CAR. When cultured cells were transfected with CAR expression plasmid, mCAR1-GFP, both cell types expressed high levels of CAR protein and could allow to examine the effect of CAR in PBRU transactivation. Both cell types expressed endogenous RXR and transfection of RXR expression plasmid dramatically increased its protein expression. Whereas CAR transactivated PBRU2C1Luciferase about 12 fold as compared to 2C1Luciferase in Hep G2 cells, it did not stimulate the luciferase activity of the PBRU reporter gene in COS cells. These results indicate that Hep G2 cells can respond to CAR differently from COS cells, and suggest that factors other than CAR and RXR may be required in inducing PBRU activation and the expression of these factors may be different between liver and kidney.

Exosome-mediated delivery of gga-miR-20a-5p regulates immune response of chicken macrophages by targeting IFNGR2, MAPK1, MAP3K5, and MAP3K14

  • Yeojin Hong;Jubi Heo;Suyeon Kang;Thi Hao Vu;Hyun S. Lillehoj;Yeong Ho Hong
    • Animal Bioscience
    • /
    • v.36 no.6
    • /
    • pp.851-860
    • /
    • 2023
  • Objective: This study aims to evaluate the target genes of gga-miR-20a-5p and the regulated immune responses in the chicken macrophage cell line, HD11, by the exosome-mediated delivery of miR-20a-5p. Methods: Exosomes were purified from the chicken macrophage cell line HD11. Then, mimic gga-miR-20p or negative control miRNA were internalized into HD11 exosomes. HD11 cells were transfected with gga-miR-20a-5p or negative control miRNA containing exosomes. After 44 h of transfection, cells were incubated with or without 5 ㎍/mL poly(I:C) for 4 h. Then, expression of target genes and cytokines was evaluated by quantitative realtime polymerase chain reaction. Results: Using a luciferase reporter assay, we identified that gga-miR-20a-5p directly targeted interferon gamma receptor 2 (IFNGR2), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase kinase kinase 5 (MAP3K5), and mitogen-activated protein kinase kinase kinase 14 (MAP3K14). Moreover, the exosome-mediated delivery of gga-miR-20a-5p successfully repressed the expression of IFNGR2, MAPK1, MAP3K5, and MAP3K14 in HD11 cells. The expressions of interferon-stimulated genes (MX dynamin like GTPase 1 [MX1], eukaryotic translation initiation factor 2A [EIF2A], and oligoadenylate synthase-like [OASL]) and proinflammatory cytokines (interferon-gamma [IFNG], interleukin-1 beta [IL1B], and tumor necrosis factor-alpha [TNFA]) were also downregulated by exosomal miR-20a-5p. In addition, the proliferation of HD11 cells was increased by exosomal miR-20a-5p. Conclusion: The exosome-mediated delivery of gga-miR-20a-5p regulated immune responses by controlling the MAPK and apoptotic signaling pathways. Furthermore, we expected that exosomal miR-20a-5p could maintain immune homeostasis against highly pathogenic avian influenza virus H5N1 infection by regulating the expression of proinflammatory cytokines and cell death.

MicroRNA-576-3p Inhibits Proliferation in Bladder Cancer Cells by Targeting Cyclin D1

  • Liang, Zhen;Li, Shiqi;Xu, Xin;Xu, Xianglai;Wang, Xiao;Wu, Jian;Zhu, Yi;Hu, Zhenghui;Lin, Yiwei;Mao, Yeqing;Chen, Hong;Luo, Jindan;Liu, Ben;Zheng, Xiangyi;Xie, Liping
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.130-137
    • /
    • 2015
  • MicroRNAs (miRNAs) are small, endogenous RNAs that play important gene-regulatory roles by binding to the imperfectly complementary sequences at the 3'-UTR of mRNAs and directing their gene expression. Here, we first discovered that miR-576-3p was down-regulated in human bladder cancer cell lines compared with the non-malignant cell line. To better characterize the role of miR-576-3p in bladder cancer cells, we over-expressed or down-regulated miR-576-3p in bladder cancer cells by transfecting with chemically synthesized mimic or inhibitor. The overexpression of miR-576-3p remarkably inhibited cell proliferation via G1-phase arrest, and decreased both mRNA and protein levels of cyclin D1 which played a key role in G1/S phase transition. The knock-down of miR-576-3p significantly promoted the proliferation of bladder cancer cells by accelerating the progression of cell cycle and increased the expression of cyclin D1. Moreover, the dual-luciferase reporter assays indicated that miR-576-3p could directly target cyclin D1 through binding its 3'-UTR. All the results demonstrated that miR-576-3p might be a novel suppressor of bladder cancer cell proliferation through targeting cyclin D1.

Mechanisms of Resorcinol Antagonism of Benzo[a]pyrene-Induced Damage to Human Keratinocytes

  • Lee, Seung Eun;Kwon, Kitae;Oh, Sae Woong;Park, Se Jung;Yu, Eunbi;Kim, Hyeyoun;Yang, Seyoung;Park, Jung Yoen;Chung, Woo-Jae;Cho, Jae Youl;Lee, Jongsung
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.227-233
    • /
    • 2021
  • Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon and ubiquitous environmental toxin with known harmful effects to human health. Abnormal phenotypes of keratinocytes are closely associated with their exposure to B[a]P. Resorcinol is a component of argan oil with reported anticancer activities, but its mechanism of action and potential effect on B[a]P damage to the skin is unknown. In this study, we investigated the effects of resorcinol on B[a]P-induced abnormal keratinocyte biology and its mechanisms of action in human epidermal keratinocyte cell line HaCaT. Resorcinol suppressed aryl hydrocarbon receptor (AhR) activity as evidenced by the inhibition of B[a]P-induced xenobiotic response element (XRE)-reporter activation and cytochrome P450 1A1 (CYP1A1) expression. In addition, resorcinol attenuated B[a]P-induced nuclear translocation of AhR, and production of ROS and pro-inflammatory cytokines. We also found that resorcinol increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activity. Antioxidant response element (ARE)-reporter activity and expression of ARE-dependent genes NAD(P)H dehydrogenase [quinone] 1 (NQO1), heme oxygenase-1 (HO-1) were increased by resorcinol. Consistently, resorcinol treatment induced nuclear localization of Nrf2 as seen by Western analysis. Knockdown of Nrf2 attenuated the resorcinol effects on ARE signaling, but knockdown of AhR did not affect resorcinol activation of Nrf2. This suggests that activation of antioxidant activity by resorcinol is not mediated by AhR. These results indicate that resorcinol is protective against effects of B[a]P exposure. The mechanism of action of resorcinol is inhibition of AhR and activation of Nrf2-mediated antioxidant signaling. Our findings suggest that resorcinol may have potential as a protective agent against B[a]P-containing pollutants.

Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases

  • Zhao, Xinxia;Ni, Wei;Chen, Chuangfu;Sai, Wujiafu;Qiao, Jun;Sheng, Jingliang;Zhang, Hui;Li, Guozhong;Wang, Dawei;Hu, Shengwei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.413-418
    • /
    • 2016
  • Myostatin (MSTN) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs) in tandem with single-stranded DNA oligonucleotides (ssODNs). We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals.

Characterization of Bovine NANOG5'-flanking Region during Differentiation of Mouse Embryonic Stem Cells

  • Jang, Hye-Jeong;Park, Hwan Hee;Tran, Thi Thuy Linh;Lee, Hak-Kyo;Song, Ki-Duk;Lee, Woon Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1721-1728
    • /
    • 2015
  • Embryonic stem cells (ESCs) have been used as a powerful tool for research including gene manipulated animal models and the study of developmental gene regulation. Among the critical regulatory factors that maintain the pluripotency and self-renewal of undifferentiated ESCs, NANOG plays a very important role. Nevertheless, because pluripotency maintaining factors and specific markers for livestock ESCs have not yet been probed, few studies of the NANOG gene from domestic animals including bovine have been reported. Therefore, we chose mouse ESCs in order to understand and compare NANOG expression between bovine, human, and mouse during ESCs differentiation. We cloned a 600 bp (-420/+181) bovine NANOG 5'-flanking region, and tagged it with humanized recombinant green fluorescent protein (hrGFP) as a tracing reporter. Very high GFP expression for bovine NANOG promoter was observed in the mouse ESC line. GFP expression was monitored upon ESC differentiation and was gradually reduced along with differentiation toward neurons and adipocyte cells. Activity of bovine NANOG (-420/+181) promoter was compared with already known mouse and human NANOG promoters in mouse ESC and they were likely to show a similar pattern of regulation. In conclusion, bovine NANOG 5-flanking region functions in mouse ES cells and has characteristics similar to those of mouse and human. These results suggest that bovine gene function studied in mouse ES cells should be evaluated and extrapolated for application to characterization of bovine ES cells.

The PKA/CREB Pathway Is Closely Involved in VEGF Expression in Mouse Macrophages

  • Jeon, Seong-Hyun;Chae, Byung-Chul;Kim, Hyun-A;Seo, Goo-Young;Seo, Dong-Wan;Chun, Gie-Taek;Yie, Se-Won;Eom, Seok-Hyun;Kim, Pyeung-Hyeun
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.23-29
    • /
    • 2007
  • Cyclic AMP-responsive element binding protein (CREB) is known to be associated with angiogenesis. In the present study we investigated the possible role of CREB in the expression of vascular endothelial growth factor (VEGF) by mouse macrophages. Over-expression of CREB increased VEGF secretion by cells of the RAW264.7 mouse macrophage cell line. It also increased the promoter activity of a mouse reporter driven by the VEGF promoter, while a dominant negative CREB (DN-CREB) abrogated the activity, suggesting that CREB mediates VEGF transcription. Forskolin, an adenylyl cyclase activator, stimulated VEGF transcription, and the PKA inhibitor H89 abolished this effect. IFN-${\gamma}$, a potent cytokine, stimulated VEGF expression only in part through the PKA-CREB pathway. These results indicate that PKA phosphorylates CREB and so induces VEGF gene expression. An analysis of mutant promoters revealed that one of the putative CREB responsive elements (CREs), at -399 ~ -388 in the promoter, is critical for CREB-mediated VEGF promoter activity, and the significance of this CRE was confirmed by chromatin immunoprecipitation assays.

Magnolol Inhibits iNOS, p38 Kinase, and NF-κB/Rel in Murine Macrophages

  • Li Mei Hong;Chang In-Youp;Youn Ho-Jin;Jang Dae-Sik;Kim Jin-Sook;Jeon Young-Jin
    • Toxicological Research
    • /
    • v.22 no.3
    • /
    • pp.293-299
    • /
    • 2006
  • We demonstrate that magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, inhibits LPS-induced expression of iNOS gene in RAW 264.7 cells(murine macrophage cell line). Treatment of RAW 264.7 cells with magnolol inhibited LPS-stimulated nitric oxide production in a dose-related manner. RT-PCR analysis showed that the decrease of NO was due to the inhibition of iNOS gene expression. Western immunoblot analysis of phosphorylate p38 kinase showed magnolol significantly inhibited the phosphorylation of p38 kinase which is important in the regulation of iNOS gene expression. The specific p38 inhibiter SB203580 abrogated the LPS-induced NO generation and iNOS expression, whereas the selective MEK-1 inhibitor PD98059 did not affect the NO induction. Immunostaining of p65 and reporter gene assay showed that magnolol inhibited NF-${\kappa}/Rel$ nuclear translocation and transcriptional activation, respectively. Collectively, this series of experiments indicates that magnolol inhibits iNOS gene expression by blocking NF-k/Rel and p38 kinase signaling. Due to the critical role that NO release plays in mediating inflammatory responses, the inhibitory effects of magnolol or iNOS suggest that magnolol may represent a useful anti-inflammatory agent.

Establishment of In Vitro Test System for the Evaluation of the Estrogenic Activities of Natural Products

  • Kim, Ok-Soo;Choi, Jung-Hye;Soung, Young-Hwa;Lee, Seon-Hee;Lee, Jae-Hwa;Ha, Jong-Myung;Ha, Bae-Jin;Heo, Moon-Soo;Lee, Sang-Hyeon
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.906-911
    • /
    • 2004
  • In order to evaluate estrogenic compounds in natural products, an in vitro detection system was established. For this system, the human breast cancer cell line MCF7 was stably trans-fected using an estrogen responsive chloramphenicol acetyltransferase (CAT) reporter plas-mid yielding MCF7/pDsCAT-ERE119-Ad2MLP cells. To test the estrogenic responsiveness of this in vitro assay system, MCF7/pDsCAT-ERE119-Ad2MLP cells were treated with various concentrations of 17f3-estradiol. Treatments of 10$^{-8}$ to 10$^{-12}$ M 17$\beta$-estradiol revealed significant concentration dependent estrogenic activities compared with ethanol. We used in vitro assay system to detect estrogenic effects in Puerariae radix and Ginseng radix Rubra extracts. Treat-ment of 500 and 50 $\mu\textrm{g}$/ml of Puerariae radix extracts increased the transcriptional activity approximately 4- and 1.5-fold, respectively, compared with the ethanol treatment. Treatment of 500, 50, and 5 $\mu\textrm{g}$/ml of Ginseng radix Rubra extracts increased the transcriptional activity approximately 3.2-,2.7, and 1.4-fold, respectively, compared with the ethanol treatment. These observations suggest that Puerariae radix and Ginseng radix Rubra extracts have effective estrogenic actions and that they could be developed as estrogenic supplements.

ARYL HYDROCARBON- AND ESTROGEN-MEDIATED SIGNALS POSSIBLY CROSS TALK TO REGULATE CYP1A1 GENE EXPRESSION

  • Joung, Ki-Eun;Kim, Yeo-Woon;Min, Kyung-Nan;Sheen, Yhun-Yhong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.112-112
    • /
    • 2001
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental toxin that activates the aryl hydrocarbon receptor (AhR) and disrupts multiple endocrine signaling pathways by enhancing ligand metabolism, altering hormone synthesis, down regulating receptor levels, and interfering with gene transcription. And TCDD-mediated gene transactivation via the AhR has been shown to be dependent upon estrogen receptor (ER) expression in human breast cancer cells. In the present study, we have examined the effect of natural estrogen, phytoestrognes and environmental estrogens on the regulation of CYP1A1 gene expression in MCF-7 human breast cancer cell line. that ER and AhR are co-expressed. pCYP1A1 -luc reporter gene was transiently transfected into MCF-7 cells. These cells were treated with various chemicals and then luciferase assay was carried out. 17be1a-estradiol significantly inhibited TCDD stimulated luciferase activity dose dependently and this inhibition was partially recovered by concomitant treatment of tamoxifen. 17beta-estradiol metabolites, 2-hydroxyestradiol and 16alpha-estriol resulted in less potent inhibitory effect than estradiol and synthetic estrogen, diethylstilbestrol (DES) showed no effect on CYP1A1 gene expression. This study demonstrated that estrogen down-regulated TCDD stimulated CYP1A1 expression via ER mediation. And we have found out that several flavonoids such as genistein, kaempferol, daidzein, naringenin, and alkylphenols such as nonylphenol, 4-octylphenol and resveratrol also inhibited TCDD induced CYP1A1 expression like estrogen.

  • PDF