Browse > Article
http://dx.doi.org/10.5713/ajas.15.0041

Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases  

Zhao, Xinxia (College of Animal Science and Technology, Shihezi University)
Ni, Wei (College of Life Sciences, Shihezi University)
Chen, Chuangfu (College of Animal Science and Technology, Shihezi University)
Sai, Wujiafu (College of Animal Science and Technology, Shihezi University)
Qiao, Jun (College of Animal Science and Technology, Shihezi University)
Sheng, Jingliang (College of Animal Science and Technology, Shihezi University)
Zhang, Hui (College of Animal Science and Technology, Shihezi University)
Li, Guozhong (College of Animal Science and Technology, Shihezi University)
Wang, Dawei (College of Life Sciences, Shihezi University)
Hu, Shengwei (College of Life Sciences, Shihezi University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.29, no.3, 2016 , pp. 413-418 More about this Journal
Abstract
Myostatin (MSTN) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs) in tandem with single-stranded DNA oligonucleotides (ssODNs). We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals.
Keywords
Transcription Activator-like Effector Nucleases; Myostatin; Targeted Gene Editing; Sheep Primary Fibroblasts;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Acosta, J., Y. Carpio, Y. Borroto, O. Gonzalez, and M. P. Estrada. 2005. Myostatin gene silenced by RNAi show a zebrafish giant phenotype. J. Biotechnol. 119:324-331.   DOI
2 Bedell, V. M., Y. Wang, J. M. Campbell, T. L. Poshusta, C. G. Starker, R. G. Krug II, T. Wengfang, S. G. Penheiter, A. C. Ma, and A. Y. H. Leung et al. 2012. In vivo genome editing using a high-efficiency TALEN system. Nature 491:114-118.   DOI
3 Boch, J., H. Scholze, S. Schornack, A. Landgraf, S. Hahn, S. Kay, T. Lahaye, A. Nickstadt, and U. Bonas. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509-1512.   DOI
4 Cermak, T., E. L. Doyle, M. Christian, L. Wang, Y. Zhang, C. Schmidt, J. A. Baller, N. V. Somia, A. J. Bogdanove, and D. F. Voytas. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucl. Acids Res. 39:e82.   DOI
5 Chen, F., S. M. Pruett-Miller, Y. Huang, M. Gjoka, K. Duda, J. Taunton, T. N. Collingwood, M. Frodin, and G. D. Davis. 2011. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat. Methods 8:753-755.   DOI
6 Clop, A., F. Marcq, H. Takeda, D. Pirottin, X. Tordoir, B. Bibe, J. Bouix, F. Caiment, J.-M. Elsen, and F. Eychenne et al. 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38:813-818.   DOI
7 Davies, B., G. Davies, C. Preece, R. Puliyadi, D. Szumska, and S. Bhattacharya. 2013. Site specific mutation of the Zic2 locus by microinjection of TALEN mRNA in mouse CD1, C3H and C57BL/6J oocytes. PloS one 8:e60216.   DOI
8 Guschin, D. Y., A. J. Waite, G. E. Katibah, J. C. Miller, M. C. Holmes, and E. J. Rebar. 2010. A rapid and general assay for monitoring endogenous gene modification. Engineered Zinc Finger Proteins (Eds. J. P. Mackay and D. J. Segal). Humana Press, Richmond, CA, USA. 247-256.
9 Hu, S., C. Chen, J. Sheng, Y. Sun, X. Cao, and J. Qiao. 2010. Enhanced muscle growth by plasmid-mediated delivery of myostatin propeptide. J. Biomed. Biotechnol.Article ID 862591.
10 Hu, S., W. Ni, W. Sai, H. Zi, J. Qiao, P. Wang, J. Sheng, and C. Chen. 2013. Knockdown of myostatin expression by RNAi enhances muscle growth in transgenic sheep. PloS one 8:e58521.   DOI
11 Huang, P., A. Xiao, M. Zhou, Z. Zhu, S. Lin, and B. Zhang. 2011. Heritable gene targeting in zebrafish using customized TALENs. Nat. Biotechnol. 29:699-700.   DOI
12 Jao, L. E., S. R. Wente, and W. Chen. 2013. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. USA. 110:13904-13909.   DOI
13 Moscou, M. J. and A. J. Bogdanove. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326:1501.   DOI
14 Kambadur, R., M. Sharma, T. P. Smith, and J. J. Bass. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7:910-916.   DOI
15 Li, W., F. Teng, T. Li, and Q. Zhou. 2013. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat. Biotechnol. 31:684-686.   DOI
16 McPherron, A. C., A. M. Lawler, and S. J. Lee. 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83-90.   DOI
17 Mosher, D. S., P. Quignon, C. D. Bustamante, N. B. Sutter, C. S. Mellersh, H. G. Parker, and E. A. Ostrander. 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 3:e79.   DOI
18 Ni, W., J. Qiao, S. Hu, X. Zhao, M. Regouski, M. Yang, I. A. Polejaeva, and C. Chen. 2014. Efficient Gene Knockout in Goats Using CRISPR/Cas9 System. PLoS One 9:e106718.   DOI
19 Proudfoot, C., D. F. Carlson, R. Huddart, C. R. Long, J. H. Pryor, T. J. King, S. G. Lillico, A. J. Mileham, D. G. McLaren, C. B. Whitelaw, and S. C. Fahrenkrug. 2015. Genome edited sheep and cattle. Transgenic Res. 24:147-153.   DOI
20 Reyon, D., S. Q. Tsai, C. Khayter, J. A. Foden, and J. D. Sander, and J. K. Joung. 2012. FLASH assembly of TALENs for highthroughput genome editing. Nat. Biotechnol. 30:460-465.   DOI
21 Schnieke, A., A. J. Kind, W. A. Ritchie, K. Mycock, A. R. Scott, M. Ritchie, I. Wilmut, A. Colman, and K. H. Campbell. 1997. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278:2130-2133.   DOI
22 Wang, Z., J. Li, H. Huang, G. Wang, M. Jiang, S. Yin, C. Sun, H. Zhang, F. Zhuang, and J. J. Xi. 2012. An integrated chip for the high-throughput synthesis of transcription activator-like effectors. Angew. Chem. 124:8633-8636.   DOI