• Title/Summary/Keyword: repair cost

Search Result 687, Processing Time 0.028 seconds

Cost Analysis Model for Minimal Repair in Free-Replacement Policy (무상수리 정책에서 응급수리 적용의 비용분석 모델)

  • 김재중;김원중
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.241-247
    • /
    • 1997
  • This paper is concerned with cost analysis model in free-replacement policy. The free-replacement policy with minimal repair is considered as follows; in a manufacturer's view point operating unit is periodically replaced, if a failure occurs between minimal repair and periodic maintenance time, unit is remained in a failure condition. Also unit undergoes minimal repair at failures in minimal-repair interval. Then total expected cost is calculated according to the parameter of failure distribution in a view of consumer's. The expected costs are included repair cost and usage cost: operating, fixed, minimal repair and loss cost. Numerical example is shown in which failure time of item has weibull distribution.

  • PDF

Cost Analysis Model for Periodic Maintenance Policy with Maintenance Cost Factor (보전비용요소를 고려한 정기보전정책의 비용분석모델)

  • 김재중;김원중
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.36
    • /
    • pp.287-295
    • /
    • 1995
  • This paper is concerned with cost analysis model in periodic maintenance policy. Generally periodic maintenance policy in which item is repaired periodic interval times. And in the article minimal repair is considered. Mimimal repair means that if a unit fails, unit is instantaneously restored to same hazard rate curve as before failure. In the paper periodic maintenance policy with minimal repair is as follows; Operating unit is periodically replaced in periodic maintenance time, if a failure occurs between minimal repair and periodic maintenance time, unit is replaced by a new item until tile periodic maintenance time comes. Also unit undergoes minimal repair at failures in minimal-repair-for-failure interval. Then total expected cost per unit time is calculated according to scale parameter of failure distribution. Maintenance cost factors are included operating, fixed, minimal repair, periodic maintenance and new item replacement cost. Numerical example is shown in which failure time of system has weibull distribution.

  • PDF

Cost Analysis for Periodic Maintenance Policy with Minimal Repair (응급수리를 고려한 정기보전정책의 비용분석)

  • 김재중;김원중
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.34
    • /
    • pp.139-146
    • /
    • 1995
  • This study is concerned with cost analysis in periodic maintenance policy. Generally periodic maintenance policy in which item is repaired periodic interval times. And in the article minimal repair is considered. Minimal repair means that if a unit fails, unit is instantaneously restored to same hazard rate curve as before failure. In the paper periodic maintenance policy with minimal repair is as follows; Operating unit is periodically replaced in periodic maintenance time, if a failure occurs between minimal repair and periodic maintenance time, unit is replaced by a spate until the periodic time comes. Also unit undergoes minimal repair at failures in minimal-repair-for-failure interval. Then total expected cost per unit time is calculated according to maintenance period and scale parameter of failure distribution. Total cost factors ate included operating, fixed, minimal repair, periodic maintenance and replacement cost Numerical example is shown in which failure time of system has erlang distribution.

  • PDF

Characteristics of the Economic Repair Time of the Components in Public Rental Housing

  • Lee, KangHee;Chae, ChangU
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.69-75
    • /
    • 2015
  • Building has required the repair money to improve or maintain the decent living condition continuously after construction. It needs to grasp the building deterioration to decide the scope and contents before it is repaired. Under various conditions such as physical, social and financial constraints, the repair plan would be prepared. Among constraints, the cost is indispensible to specify the repair time, repair scope and target. The required cost would be planned to preparation over the years. In this paper, it aimed at providing the repair strategy of the public rental housing in repair time, using the cumulative cost model which is $3^{rd}$ function. In the $3^{rd}$ function, the inflection point should exist in the line. And there are two types in the cumulative model, First, if the maximum cost be shown, the repair time would be provided. Second, if the maximum cost not be shown, the cumulative function should be proportionally increased and the repair strategy is properly provided with a short cycle. In results of this study, 11 items would provide the repair time. These cumulative function would be repaired about 4 years after constructed, and after about 4 years, the cumulative function would be continuously increased.

Low-Cost Design for Repair by Using Circuit Partitioning (회로 분할을 사용한 저비용 Repair 기술 연구)

  • Lee, Sung-Chul;Yeo, Dong-Hoon;Shin, Ju-Yong;Kim, Kyung-Ho;Shin, Hyun-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.5
    • /
    • pp.48-55
    • /
    • 2010
  • As the complexity and the clock speed of semiconductor integrated circuits increase, silicon validation becomes important. In this research, we developed new post-silicon repair & revision techniques to reduce cost and time-to-market. Spare cells are fabricated with the original design and are used for repair when necessary. The interconnections are modified by repair layer revision. The repair cost can be reduced by logic partitioning. Experimental results show that these techniques are effective for low-cost and fast turnaround repair.

Periodic Replacement Policies with Minimal Repair Cost Limit

  • Yun, W.Y.;Bai, D.S.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.11 no.1
    • /
    • pp.3-10
    • /
    • 1985
  • Periodic replacement policies are proposed for a system whose repair cost, when it fails, can be estimated by inspection. The system is replaced when it reaches age T (Policy A), or when it fails for the first time after age T (Policy B). If it fails before reaching age T, the repair cost is estimated and minimal repair is then undertaken if the estimated cost is less than a predetermined limit L; otherwise, the system is replaced. The expected cost rate functions are obtained, their behaviors are examined, and ways of obtaining optimal T and L are explored.

  • PDF

A Proposal of Repair Cost Estimating Criteria for Persistent Defects in Apartment Houses

  • Lee, Hae-Jin;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.597-608
    • /
    • 2011
  • It has been often noted as a problem that as there are no objective and clear criteria for the repair cost estimate of persistent defects, when a claim arises in relation to an apartment construction, significantly different amounts of compensation may be given for similar defects based on the experience and tendencies of the construction experts asked to make a judgment. For this reason, this research aims to present defect managers with a more reasonable and objective estimation criteria and a system to determine the repair cost of defects based on an analysis of relevant factors. The research findings show that the historical cost system is applied first, and then a standard of estimation is used to estimate the cost for the items that are not included in the historical cost system. The criteria for the repair cost for each defect is as follows: the repair cost for defects arising from a regulation violation is determined by calculating the reconstruction cost of the parts in question after demolishing them; the repair cost for progressive defects is determined based on a contribution ratio proportional to the age of the building; the repair cost for repetitive defects is calculated by considering an alternative to maximize the intended function of the defective parts; and the repair cost for value depreciation defects is determined based on the ratio of the warranty period to the lapsed years. However, repair cost estimation for dual value depreciation defects should be studied in future research.

A Study on the Forecasting Model of the Required Cost for the Long-term Repair Plan in Apartment housings (공동주택의 장기수선계획 소요비용 예측모델 연구)

  • Lee, Kang-Hee;Yoo, Uoo-Sang;Chae, Chang-U
    • KIEAE Journal
    • /
    • v.11 no.3
    • /
    • pp.63-68
    • /
    • 2011
  • Building deterioration would be proceeded by various causes such as physical, social, economic degradation. The deterioration would be inevitably prevented or delayed to get the decent function and performance in various building part and components. The maintenance and management are continued to provide the decent living condition for the household. The maintenance means mainly a repair, including the on-time and longterm plan. The longterm repair would be conducted by the systemic preparation in management activity and a required cost. Therefore, the annual due for the longterm repair plan is important to prepare the repair cost in a required time. In this paper, it aimed at analyzing the longterm repair cost and modelling to forecast the required cost in total area, number of household and time elapse in apartment housing. The estimation model of a repair cost is used with a power function which has a good statistics. Results of this study are shown that the sample has a longterm repair due in a $2,032won/m^2{\cdot}yr$ averagely which is higher than $912won/m^2{\cdot}yr$ in domestic. Second, the longterm repair due is proportionally correlated with the time elapse in both a total area and the number of household. Third, the estimation model for the longterm repair amount is suitable for the power function which is most in any other estimation models. Fourth, the ration of the longterm plan repair due a year to the cumulated longterm amount is about 26%.

A Study on the Causes and Cost analysis of Maintenance and Repair work in the University Facilities (대학시설(大學施設)의 유지보수공사(維持補修工事) 발생요인(發生要因)과 비용분석(費用分析) 연구(硏究))

  • Lee, Gyoo-Joo;Lee, Soo-Yong
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.9 no.3
    • /
    • pp.5-12
    • /
    • 2002
  • This study attempts to suggest a standard for maintenance and repair cost per each unit area, by analyzing the causes and cost of various maintenance and repair work in the university facilities. The result of my study on the data of maintenance and repair work for 12 years between 1990 and 2001 in the two campuses of the university that I selected for my case study is the following. (1) The yearly average for maintenance and repair cost in the facilities of the university with 67 old and new buildings for the past 12 years was $W4,422/m^2$. In addition, the repair cost based on the calculation of the degree of decrepitude of the buildings was $W10,291/m^2$. (2) The number of causes of maintenance and repair work increase steadily every year, due to the development of universities and changes in the educational environment. A special case like a university merger also appears, which also demands maintenance and repair work of university facilities. (3) It is important that a budget for interior maintenance is increased or added to an extent, in order to minimize the maintenance and repair cost of the university facilities, and to cope with changing educational environments flexibly. (4) The publication of a white paper that includes the planning of a building, construction process, and changes in design, seems to be required for the sake of users' convenience and efficient maintenance and repair work.

Replacement Policies Based on System Age and Random Repair Cost under Imperfect Repair

  • Yun, Won Young
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 1990
  • Replacement policies based on both the system age and the random repair cost are studied. The system is replaced when it reaches age T (Policy A), or when it fails for the first time after age T (Policy B). If the system fails before age T, the repair cost is estimated and repair is then undertaken if the estimated cost is less than a predetermined limit L ; otherwise, the system is replaced. After repair, the system is as good as new with probability (1-p) or is as good as old with probability P. The expected cost rate is obtained, its behavior is examined, and way of obtaining optimal T and L is explored.

  • PDF