• Title/Summary/Keyword: remote robot control

Search Result 326, Processing Time 0.026 seconds

Development of the remote control system for Internet-based mobile robot using Embedded Linux and Qt

  • Park, Tae-Gyu;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.622-627
    • /
    • 2003
  • The existing remote control system have some inherent disadvantage of direct control in the limit range. In some special cases, for example, a power apparatus, an unmanned factory, a nuclear factory, a security management system, the tele-operation is needed to control remote robot without limit space. This field is based on the Internet communication. Because the Internet is constructed all over the world. And it is possible that we control remote mobile robot in the long distance. In this paper, we developed a remote control system. This system is divided into two primary parts. These are local site and remote site. There are the moving robot and web server in the remote site and there is the robot control device in local site. The moving robot is moved by two stepper motors and the robot control device consists of SA-1100 micro controller and embedded Linux. And this controller is an embedded system. Public personal computer which is connected the Internet is used for the web server. The web server provides the mobile robot control interface program to the remote controller and captures the image for feedback information. In the whole system, a robot control device is connected with moving robot and web server through the Internet. So the operator can control the moving robot in the distance through the Internet.

  • PDF

Real-Time Travelling Control of Mobile Robot by Conversation Function Based on Voice Command (대화기능에 의한 모바일로봇의 실시간 주행제어)

  • Shim, Byoung-Kyun;Lee, Woo-Song;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.4
    • /
    • pp.127-132
    • /
    • 2013
  • We describe a research about remote control of mobile robot based on voice command in this paper. Through real-time remote control and wireless network capabilities of an unmanned remote-control experiments and Home Security / exercise with an unmanned robot, remote control and voice recognition and voice transmission are possible to transmit on a PC using a microphone to control a robot to pinpoint of the source. Speech recognition can be controlled robot by using a remote control. In this research, speech recognition speed and direction of self-driving robot were controlled by a wireless remote control in order to verify the performance of mobile robot with two drives.

A study on Autonomous Travelling Control of Mobile Robot (이동로봇의 자율주행제어에 관한 연구)

  • Lee, Woo-Song;Shim, Hyun-Seok;Ha, Eun-Tae;Kim, Jong-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.1
    • /
    • pp.10-17
    • /
    • 2015
  • We describe a research about remote control of mobile robot based on voice command in this paper. Through real-time remote control and wireless network capabilities of an unmanned remote-control experiments and Home Security / exercise with an unmanned robot, remote control and voice recognition and voice transmission are possible to transmit on a PC using a microphone to control a robot to pinpoint of the source. Speech recognition can be controlled robot by using a remote control. In this research, speech recognition speed and direction of self-driving robot were controlled by a wireless remote control in order to verify the performance of mobile robot with two drives.

Wireless Communication Real-Time Travelling Control of Mobile Robot by Voice Command (음성명령에 의한 모바일로봇의 무선통신 실시간 주행제어)

  • Shim, Byoung-Kyun;Han, Sung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.33-38
    • /
    • 2011
  • We describe a research about remote control of mobile robot based on voice command in this paper. Through real-time remote control and wireless network capabilities of an unmanned remote-control experiments and Home Security / exercise with an unmanned robot, remote control and voice recognition and voice transmission are possible to transmit on a PC using a microphone to control a robot to pinpoint of the source. Speech recognition can be controlled robot by using a remote control. In this research, speech recognition speed and direction of self-driving robot were controlled by a wireless remote control in order to verify the performance of mobile robot with two drives.

Internet-Based Remote Control of the Intelligent Robot (지능형 로봇의 인터넷 기반 원격 제어)

  • Yu, Young-Sun;Kim, Jong-Sun;Kim, Hyong-Suk;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.242-248
    • /
    • 2007
  • In this paper, we implement the internet-based remote control system for intelligent robot. For remote control of the robot, it uses the socket communication of the TCP/IP. It consists of the user interface and the robot control interface. Robot control interface transmits the navigation and environmental informations of the robot into the user interface. In order to transmit the large environmental images, a JPEG compression algorithm is used. User interface displays the navigation status of the robot and transmits the navigation order into the robot control interface. Also, we propose the design method of the fuzzy controller using navigation data acquired by expert's knowledge or experience. To do this, we use virus-evolutionary genetic algorithm(VEGA). Finally, we have shown the proposed system can be operated through the real world experimentations.

Remote Monitoring and Control of the Real Robot associated with a Virtual Robot

  • Jeon, Byung-Joon;Kim, Dong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.43-48
    • /
    • 2005
  • A robot system encompassing a remote control and monitoring through a virtual robot design is addressed and a tracking problem for a 2D (2 dimension) moving target by a robot vision is chosen as a case study. The virtual robot is developed, and it synchronizes with the real robot by compensating delay time. Two systems are displayed on a remote panel by communicating command and image data. The virtual robot utilizes an OpenGL library in Visual $C^{++}$ environment. Additionally, the remote monitoring and control between the real robot and the virtual robot are accomplished by employing an appropriate data compression in a network communication.

  • PDF

Remote Navigation System for Mobile Robot (이동 로봇의 원격 주행 시스템)

  • Kim, Jong-Seon;Yu, Yeong-Seon;Kim, Sung-Ho;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.325-327
    • /
    • 2007
  • In this paper, we implement the internet- based remote control system for intelligent robot. For remote control of the robot, it uses the socket communication of the TCP/IP. It consists of- the user interface and the robot control interface. Robot control interface transmits the navigation and environmental informations of the robot into the user interface. In order to transmit the large environmental images, a JPEG compression algorithm is used. User interface displays the navigation status of the robot and transmits the navigation order into the robot control interface. Also, we propose the design method of the fuzzy controller using navigation data acquired by expert's knowledge or experience. To do this, we use virus-evolutionary genetic algorithm(VEGA). Finally, we have shown the proposed system can be operated through the real world experimentations.

  • PDF

Iot Based Vision and Remote Control a Compact Mobile Robot System (IoT 기반의 비전 및 원격제어 소형 이동 로봇 시스템)

  • Jeon, Yun Chae;Choi, Hyeri;Yoon, Ki-Cheol;Kim, Gwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.267-273
    • /
    • 2021
  • Recently, the small-size mobile robots with remote-control are rapidly growth which market of mobile is increased in the world. Especially, the smart-phones are widely used for interface device in the small size of a mobile robot. The research goal is control system design which is applied to miniaturization of a mobile robot using smart-phone and it can be confirmed performance for designed system. Meanwhile, the fabrication of mini-mobile robot can also be remote-control operation through the WIFI performance of a smart-phone. The smart-phone is used to remote-control for robot operation which control data transmit to robot via the WIFI network. To drive the robot, we can observe by the smart-phone screen and it can easily adjust the robot drive condition and direction by smart-phone button. Consequentially, there was no malfunction and images were printed out well. However, in drive, because of blind spot, robot was bumped into obstacle. Therefore, the additional test is necessary to sensor for blind spot which sensor can be equipment to mobile robot. In addition, the experiment with robot object recognition is needed.

A Web-Based Robot Simulator (웹 기반 로봇 시뮬레이터)

  • Hong, Soon-Hyuk;Lee, Sang-Hyun;Jeon, Jae-Wook;Yoon, Ji-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.255-262
    • /
    • 2001
  • According to the advancement of web related technologies, many works on robots using these technologies, called web-based robots enables sharing of expensive equipments as well as control of remote robots. But none of the existing methods about web-based robots in-clude robot simulators in their web browser, which transfer appropriate information of a remote place to the local users. In this paper, a web-based robot simulator is proposed and developed to control a remote robot by using the web. The proposed simulator can transfer the 3D information about the remote robot to the local users by using 3D graphics, which has not been previously developed. Also, it sends the camera image of a remote place to the local users so that the users can use this camera image as well as 3D information in order to control the remote robot.

  • PDF

Remote Navigation Control for Intelligent Robot Using PSO (PSO를 이용한 지능형 로봇의 원격 주행 제어)

  • Mun, Hyun-Su;Joo, Young-Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.64-69
    • /
    • 2010
  • In this paper, we propose remote navigation control for intelligent robot using particle swarm optimization(PSO). The proposed system consists of interfaces for intelligent robot navigation and user interface in order to control the intelligent robot remotely. And communication interfaces using TCP/IP socket is used. To do this, we first design the fuzzy navigation controller based on expert's knowledge for intelligent robot navigation. At this time, we use the PSO algorithm in order to identify the membership functions of fuzzy control rules. And then, we propose the remote system in order to navigate the robot remotely. Finally, we show the effectiveness and feasibility of the developed controller and remote system through some experiments.