
ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

1. INTRODUCTION

An efficient and intelligent robot system design requires

various technologies to liberate human from dangerous and
difficult works. Human vision and tactics have been imitated
for an intelligent robot, not completed yet, expanding those
applications to a robot system. A robot with powerful data
processing and storage owing to a computer is superior to
human, being a powerful tool or equipment for substituting
human works. A robot vision closely resembles human as far
as technology progresses. Also, networking technology gives
rise to tremendous change to human life, and it has been
applied to a robot system by delivering a lot of commands and
image data to a remotely placed robot in almost real time. In
the light of an intelligent and efficient robot design, a virtual
machine concept is applied to a robot system or manufacturing
system, which is simulating a real system for enhancing the
system performance [1, 5, 11]. A teleoperation, which is
another effort to generate an efficient robot system, is
accomplished by employing a networking [4,6,13].

In this article, we present an integrated system, which
remotely controls and monitors a real robot by introducing a
virtual robot design, and a network communication program.
A tracking control for a 2D moving target integrated with the
above schemes is given an example to evaluate the system
performance. The system, as stated again, encompasses a
camera vision, a tracking algorithm based on the camera
information, and a network communication delivering
command data and real camera image. The virtual robot
design adopted from the kinematics solutions is addressed
which excludes a direct signal feedback from the real robot,
enabling to prevent undesirable operations due to the image
and data communication error in a remote operation, and the
way of synchronization with the real robot is developed.

The robot taken into consideration here is a serially
articulated 5 dof type, and a vision camera is attached to the
fifth link called a wrist. In this manner, a wider workspace can
be guaranteed compared to a fixed camera system installed
outside of the robot. A classical robot kinematics such as
forward and inverse kinematics is employed to reach the target
position which is identified by a camera image analysis.

A virtual robot is mainly designed to resemble the motion
of the real robot, which can contribute to preventing blockage
ahead or hassle, and an undesirable path moving. All
directional views can be examined by an operator’s choice just

by dragging a mouse in the computer monitor, hence no longer
relying on direct images coming from the cameras installed
around the robot. All motions of the virtual robot are
computed based on the robot kinematics, thus there might not
be errors or malfunctions unless an operator handles
improperly. The acquired image from the camera, which is
caught by the wrist camera, is transferred to a PC to calculate
the target position and velocity. The target tracking and
grapping motions are also displayed on the virtual robot along
with a real robot. The virtual robot is implemented by using an
OpenGL tool in Visual C++ software [12].

Networking technologies are employed to accomplish a
remote operation, where the robot position and orientation are
monitored through a remote window, so called a client
computer. At the same time, a server program is provided to
control the real robot. The monitoring and control programs
on both server and client provide an easy operation whether an
operator is located at remote place or at real robot. Since the
camera image data possess a big size memory, appropriate
data compression for network communication is needed,
which enables to demonstrate movie images in almost real
time. At the same time, the virtual robot generated at the
server program also appears to the client program through a
network.

The article consists of robot system configuration, virtual
robot development and its control method, target image
analysis by robot vision, remote control, and monitoring based
on networking. All subjects are systematically integrated in
order to carry out a remote real time control and monitoring
operation.

2. System configuration

A 5 dof articulate robot is employed to develop a remote

control and monitoring system associated with 2D tracking
control by a robot vision, virtual robot representation, and data
communication in a networking. The robot is controlled by
MMC (Multi Motion Controller) [10], where a library
program is provided for a program development. A target is on
the plate moving along x-y axes, which is controlled by two
motor drivers. A camera is attached on the wrist, the fifth link,
and it acquires instant image and transfers it to an image
grabber connected to a PC. The 2D moving target the robot
takes commands from the controller after the target is
identified through a camera vision processing. At the same
time, the robot motion associated with the tracking is

Remote Monitoring and Control of the Real Robot associated with a Virtual Robot

Byung Joon Jeon*, and Dong Hwan Kim **

*Department of Mechanical Design Seoul National University of Technology, Korea
** School of Mechanical Design and Automation Engineering, Seoul National University of Technology

172 Gongneung-dong, Nowon-gu, Seoul, 139-743, Korea
 (Tel : +82-2-970-6362; E-mail: dhkim@snut.ac.kr)

Abstract: A robot system encompassing a remote control and monitoring through a virtual robot design is addressed and a
tracking problem for a 2D (2 dimension) moving target by a robot vision is chosen as a case study. The virtual robot is developed,
and it synchronizes with the real robot by compensating delay time. Two systems are displayed on a remote panel by
communicating command and image data. The virtual robot utilizes an OpenGL library in Visual C++ environment. Additionally,
the remote monitoring and control between the real robot and the virtual robot are accomplished by employing an appropriate data
compression in a network communication.
Keywords: virtual robot, synchronizing, network communication, 2D moving target, remote operation

43

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

represented in the form of the virtual robot programmed by an
OpenGL library in Visual C++. Finally, all motions are
displayed both at the remote computer (as a client) and at the
server computer through a networking communication.

3. VIRTUAL ROBOT DESIGN

3.1 Virtual robot structure
In this article, we construct a virtual robot displaced on a

computer monitor by utilizing an OpenGL software based on
Visual C++.

Fig. 1Virtual robot design flow in OpenGL

By combining the OpenGL structure and the information of
the robot kinematics, a virtual robot design is developed and
its design procedures are shown in Fig. 1. The first step for
building the virtual robot is to make it possess the same
mechanism and kinematics with the real robot, and all
geometric information on the real robot are stored in the form
of “Vertex data” [12]. The vertex data from the real robot are
transformed to generate another data to be fit on the computer
monitor, matching with the rendered data through OpenGL.
Finally every frame data for the virtual robot goes into the
frame buffer, eventually appearing on the PC monitor.

The virtual robot accompanying the above procedures is
represented in Fig. 2. The kinematics of the real robot is surely
employed to provide the virtual robot with correct data set.
The frame speed is determined from the angular velocities of
the 5 joints, which are coming from the operator’s predefined
setup, not from direct angular velocities feedback. Usually, the
operator just assigns average angular velocity for each joint to
determine the frame speed. However, in a real robot operation,
the robot takes appropriate acceleration/deceleration values in
the starting and ending operations, which prevent an
undesirable jerk and guarantee a smooth movement. In the
sequel, there is an inevitable discrepancy between the real
robot and the virtual robot as taking only average joint
velocity. Therefore, synchronization between two robots is of
importance, which indicates that two robots move identically
at every step. Slightly different or wrong information gives
rise to an unsatisfactory movement in the virtual robot. The
frame generation speed for the virtual robot needs to be
adjusted considering the acceleration/deceleration of the real

robot, which is a crucial issue for a perfect synchronization
between two robots, and the detail is explained in the later
section.

 Fig. 2 A virtual robot generation

3.2 Virtual robot implementation
The robot kinematics of the 5-dof robot is utilized to build

the virtual robot, distinguishing other virtual robot design that
takes feedback signals from the real robot by using a touching
device or a cyber glove, called a direct reflective robot
[1,5,11]. This kind of virtual robot has a disadvantage with
regard to the undesirable operation such as an obstacle
collision or a malfunction associated with data communication
error. In other words, when the real robot moves more out of
range or to an unspecified location, the virtual robot does not
catch or predict the coming troubles since it just follows the
positions and velocities of the real robot, hence an undesirable
operation may not be avoided adequately in advance.
Furthermore, a data communication error or misleading data
set gives rise to a serious operation to the remote robot due to
simple reliance on the feedback signals. To tackle this hassle,
the virtual robot taking kinematics information from the real
robot along with forward and the inverse kinematics is
proposed here and it shows more reliable operation at the real
robot than the virtual robot by direct feedback.
3.3 Synchronization between real robot and virtual
robot

 When the target position and the orientation for gripping
are determined, which are expressed by the end-effector
coordinate, the associated set of joint angles for each joint
is computed based on the inverse. In computing velocities
for the 5 axes to synchronize the real robot and virtual
robot, average velocities which divide the distance to the
target by the desired time to reach the target is used in an
initial try. In a real robot operation, however, some
amounts of acceleration and deceleration are imposed on
the robot motion control to make a smooth start and stop.
On the other hand, the virtual robot only takes constant
increment per every step, simply from the average
velocity. From the point of view that the virtual robot
should follow the real robot; the close arrival to the final
destination and synchronized motion at every motion
frame may not be accomplished by simple average
velocity set for each joint, yielding a discrepancy between
two robots. Therefore, the acceleration and deceleration
actually need to be taken into consideration in generating
the virtual robot in order to synchronize two robots. In
Fig.3, the acceleration/deceleration compensation is
illustrated, which makes the areas of two velocity patterns
(as denoted as real and virtual robot velocity patterns in

Call OpenGL
functions

Transform and
lightening

Rasterization

Frame buffer

PC monitor

Inverse
kinematics

Virtual robot
position

44

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

Fig. 3) be identical by decreasing the initial constant
averaged velocity of the virtual robot. Ultimately, this
scheme, even if it looks simple, results in diminishing
discrepancy between two robots, and whole experimental
data based on this scheme is shown in later section.

at
and

dt in Fig.3 represent the end time of acceleration
range and the starting time of deceleration range,
respectively.

Fig.3 Acceleration/deceleration compensation for a
virtual robot

With compensating the acceleration/deceleration, the
virtual robot can reach the target at the same time as the
real robot does even if the intermediate motions between
two robots do not exactly match, but averagely being
synchronized.

Fig. 4 Procedures of displaying position of the virtual
robot

The procedures for the virtual robot representation are
summarized in Fig. 4. Let θ∆ , Tθ , and Nθ be the
joint movement, joint target, and current joint angle,
respectively. T , and st are the approaching time to the
target, and the sampling time. For every sampling time, the
virtual robot moves by the amount of

Iθ , joint velocity
increment, through which the virtual robot motion is
displayed to be synchronized with the real robot if the
deficiency is decreased sufficiently.

3.3 Target tracking algorithm
 The coordinates for camera image (x and y axes) and
robot are usually set by different coordinates. To identify
the target, a coordinate transform between two
coordinates is needed. Basically, the camera coordinate is
differently scaled with the robot coordinate and y-axes
are reversed each other. When the robot receives the
command for target gripping, it moves fast to the position
where the camera starts taking a shot. From then, z
direction of the end-effector is fixed, only x and y axis
movements of the robot are involved to take shots. The
camera utilized in this experimental setup has 320x240
pixels and the working space of the robot (target space)
corresponds to 240mm width (x axis) and 170mm height
(y axis). Therefore, one pixel along x-axis is
240/320=0.75 mm/pixel, and along y-axis is
170/240=0.70833 mm/pixel, respectively.

For a 2D tracking, a target location needs to be
estimated first where it will reach at specified time. When
this location is estimated, the robot gripper should reach
the expected target location in advance before the target
arrives, and stands by until the target passes the gripping
location determined from the estimation. Finally, the
gripper grips the approaching target instantly by lowering
down the robot and closing the gripper.

Suppose the target travels along x and y axes with
constant velocities within a workspace, not necessarily
equal, i.e., x and y axis velocities can be set differently by
moving a x-y table with different velocities. The velocity
of the moving target is calculated based on two points
identified from the camera shots with appropriate time
interval. Later, the target is assumed to keep this velocity
until captured at the specified location.

 Now the locations of the two image shots are
designated by),(),,(222111 yxQyxQ , and the gripping
location by),(333 yxQ as illustrated in Fig. 10.

 Fig. 5 Locations of moving target for camera image
shots

Also, the distance between 1Q and 2Q is
assigned as 1l , and between 2Q and 3Q is by 2l .
Then 1l is easily calculated as

2
12

2
121)()(yyxxl −+−= (1)

at dt

velocity

time

Virtual robot
velocity

Real robot velocity
pattern

Initial constant
velocity

Determine the target and
arriving time for end-effector

Solve inverse kinematics

Joint movement: NT θθθ −=∆

Joint velocity: TV /θθ ∆=

Joint velocity increment sVI t/θθ =

Virtual robot displays by adding Iθ for every sample
until 0=∆θ

l2

l1

First shot
Q1 (x1,y1)

Second shot
Q2 (x2,y2)

Grapping

location

Q3 (x3,y3)

τ x

y

45

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

The target velocity v is computed when the camera
shot time between 1Q and 2Q is given as 1t

1

2
12

2
12

1

1)()(

t
yyxx

t
lv

−+−
==

 (2)

Because the target velocity is assumed constant, the
gripping location)(333 ,yxQ can be computed when the
gripping time is given 2t after the second shot as follows

))(1(

)cos() (
)cos()(

12
1

2

21

213

xx
t
t

tvl
llx

−+=

+=
+=

τ
τ (3)

))(1(

)sin() (
)sin()(

12
1

2

21

213

yy
t
t

tvl
lly

−+=

+=
+=

τ
τ (4)

Of course, the assumption that the target velocity keeps
constant does not seem to be realistic in general target tracking
problem, but in a limited 2D operation such as a conveyor or a
logistic system the moving target or object can be constrained
with a constant velocity. For gripping a moving target, there
are several algorithms. A generally known algorithm is to
follow the target directly by continuously taking camera shots
and identifying where it moves, and the other way is to
increase the number of shots to get more precise location and
velocity changes. However, to catch exact location of the
target as it moves, these ways require complicated camera
image identification schemes and minimum processing time to
align the identified location by image processing with the real
target location. To rely on these schemes ultimately requires
highly costly equipments and large computational load. On the
other hand, in this article, an integrated system development
for a remote control and monitoring along with a virtual robot
and network communication is a primary issue, hence a
relatively simple algorithm of gripping the moving target is
adopted to verify the performance of the integrated system.

4. NETWORK COMMUNICATION

When a remote operation and monitoring is
considered, the command from a remote operator needs
to be executed in real time, and the camera image for
monitoring a target should be transferred to the operator
without a serious time delay. At the same time, the
motion of the designed virtual robot should match with
the real robot as exactly as possible, eventually delivering
it such that an operator recognizes in an almost real time
base. To communicate between the operator and the robot,
all information is transferred through a network, which
prevails in a communication world. In this article,
WinSock API (Windows Socket Application
Programming Interface) is adapted to transfer data and
image between on-site PC (real robot location) and
remote PC (operator side) through a network. Two
protocols exist at a transport layer served in the API,
namely TCP and UDP, which possess a stream type
socket and a datagram type socket, respectively [9]. The
stream type socket is a connection-oriented socket that
two process sockets are surely open before
communication starts. On the other hand, the datagram

type socket is a connectionless socket that does not
require socket opening before communication, hence it
guarantees fast data transfer even if there could be a
possibility of imprecise data delivery. In this article, the
latter socket is employed to ensure a fast data transfer for
image data even if there might be a slight image
distortion as long as the image remains within a
discernible range. On the other hand, the command data
not requiring large sized data, crucial for a precise
operation, can be exactly delivered by this protocol. For a
visualized operation, a sever and a client program are
developed, which both encompass robot vision, virtual
robot via OpenGL, and network.

4.1 Server and client programs
 A server program consists of a robot vision, virtual robot,
and network program, which dedicates to monitoring and
controlling the real robot directly. At the left figure of
Fig.6, a camera monitor is displayed on the left top menu,
and a virtual robot is on the right top. The robot control
buttons are shown on the middle, and robot axes data are
displayed on the bottom.

4.2. Client program
 Fig. 6 A server program (left) and a client program (right)
through network based control and monitoring

A client program displays information coming from a
server through a network, and also controls the server program.
The camera image data are transferred to the server first, and
later delivers to the client after feasible data compression by
JPEG format [8], accomplishing a real time monitoring. The
structure of the client program is similar to the server program
in respect of encompassing real camera image, virtual robot,
robot control commands, and axes angles information. On the
right side of the Fig.6, the developed server program is
illustrated. Here, it is proven that the camera image, virtual
robot, and axes data are all transferred via a network without
significant time delay or data distortion.

5. EXPERIMENAL RESULTS

5.1 Synchronization between real robot and virtual
robot
 In order to estimate the arrival time for the end-effector to
reach to the target position, repetitive experiments are done.
The time is dependent on where the target locates, and it is
approximately within 2 sec for a current experiment setup,
indicating the target needs to be gripped in this time range. As
the target velocity increases, the arrival time decreases.
Therefore the robot should move fast to track the target.
Nevertheless, the target should not escape from the range of
the camera image frame. It is indicative that the camera shots
to estimate a location of the target for gripping should be done
before the target image disappears from the image frame. At
the same time, during the robot tracking for the 2D moving
target gripping, the virtual robot motion should follow the real
robot, which can be done by updating new frame with

N

46

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

appropriate increment rate, eventually synchronizing with the
real robot.

Two cases for a virtual robot movement to see how they
synchronize are done: without acceleration/deceleration
compensation and with compensation. First, when the
acceleration/deceleration is not compensated, just taking the
average joint velocity, there is some amount of deficiency
between the real robot and the virtual robot as shown in Fig. 7.

(c) deficiency

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 4 7 10 13 16 19 22 25 28 31 34

Numbers of Sampling

P
ul
s
e

Axis 0

Axis 1

Axis 2

Axis 3

Axis 4

 Fig. 7 Deficiency of joint angles between real robot
and virtual robot two robots (without accel/decel
compensation)

Considering the encoder output used in this experiment,
where 1 degree corresponds to 2275 pulses, it implies that
the error between two robots is not much serious even if the
compensation is not made. Now, to obtain more accurate
synchronizing between two robots, the
acceleration/deceleration compensation is adopted as stated
in the previous section, showing less error for every joint as
plotted as in Fig.7. These results are done for three locations
(far, medium, and near from the reference frame: denoted by
1,2,3 in horizontal axis), ensuring that the errors are
remarkably diminished compared with the non-compensated
case.

deficiencies

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4

locations

p
u
ls
e

0 Axis

1 Axis

2 Axis

3 Axis

4 Axis

Fig. 8 Deficiencies of two robots for different target
locations (with accel/decel compensation)

As the target location is far from the starting position, the
moving velocity of the robot increases to reach there within
specified time, causing larger deficiency than the near target
location. But we do not change the velocity of the virtual
robot for the far location tracking especially, just making
acceleration/deceleration compensation by adjusting the
average velocity. By virtue of this, the deficiency for every
location becomes much smaller than the non-compensated
case. This provides almost perfect synchronization
between two robots. Fig. 8 illustrates the demonstration how
two robots are synchronizing. However, even after the
compensation, we see still quite small synchronizing error.
This is mostly from the mechanical delay at start and stop

stages due to the substantial amount of frictions at each joint,
which can be somehow inevitable.

Fig. 8 Demonstration for synchronization of two
robots: (a) Real robot (b) Virtual Robot

6. CONCLUSIONS
We have presented several outcomes regarding to the remote

robot monitoring and control that encompasses a virtual robot
design and its synchronization with the real robot, 2-D moving
target tracking through a camera image processing, and
network communication between client and server. All
subjects are integrated systematically to implement a real time
control and monitoring of a robot. Acceleration/deceleration
compensation is introduced to accomplish the precise
synchronization between two robots. With the help of the
virtual robot, which utilizes robot kinematics, undesirable
operations are predicted in advance compared with the system
relying on the direct feedback of sensor signals. System
performance for a remote operation is verified by showing an
example of 2D tracking problem associated with many
functions such as camera vision, virtual robot design, and
remote data communication on network. All functions are
mutually screened whether they are reciprocally connected to
surmount obstacles in terms of data delay or undesirable
operation due to miscommunication.

6.3 References

[1] C. Basdogan, C.-H. Ho, M. A. Srinivasan, and M.
Slater, An experimental study on the role of touch in
shared virtual environments, ACM Transactions on
Computer-Human Interaction, Vol. 7 No. 4, pp.
443~460, 2000
[2] G.. D. Kessler, L. F. Hodges, and N. Walker, Evaluation of

47

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

the CyberGlove as a whole-hand input device, ACM
Transactions on Computer-Human Interaction (TOCHI), Vol.
2, No. 4, pp. 263~283, 1995
[3] K. Schäfer, B. Brauer, and W. Bruns, A new approach to
human-computer interaction—synchronous modelling in real
and virtual spaces, Proceedings of the conference on
Designing interactive systems: processes, practices, methods,
and techniques, pp. 335 – 344, 1997
[4] G.. Dodds, T. Ogasawara, N. Glover, and K. Kitagaki,
Telerobot control and real-time simulation environment
using parallel processing, Control Theory and
Applications, IEE Proceedings, Vol. 143, No. 6 , pp.543
~550, November 1996

[5] F. Lamiraux, S. Sekhavat, and J.-P. Laumond,
Motion planning and control for Hilare pulling a trailer,
IEEE Transactions on Robotics and Automation, Vol.
15, No. 4, pp. 640 ~ 652, 1999
[6] X.-G.. Wang, M. Moallem, and R.V. Patel, An
Internet-based distributed multiple-telerobot system,
IEEE Transactions on Systems, Man and Cybernetics,
Vol. 33, No. 5, pp. 627 ~634, 2003
[7] M. Sweet, OpenGL Super Bible, 2nd Ed., 2001.
[8] Samsung Electronics, MMC user’s manual, 2002.
[9] Matrox, Matrox Imaging Library v6.0, user manual, 1999.
[10] J.J. Craig Introduction to Robotics: Mechanics and
Control“, 2nd Ed., Addison Wesley Longman Inc, 1998.
[11] E. R Davies, Machine Vision: Theory, Algorithms,
Practicalities, 2nd Ed., Academic Press, 1996.
[12] E. Trucco, Introductory Techniques for 3-D Computer
Vision, Prentice Hall, 1998.
[13] D. Roberts, Developing for the Internet with WinSock,
1998.

48

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

