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1. INTRODUCTION 

 
An efficient and intelligent robot system design requires 

various technologies to liberate human from dangerous and 
difficult works. Human vision and tactics have been imitated 
for an intelligent robot, not completed yet, expanding those 
applications to a robot system. A robot with powerful data 
processing and storage owing to a computer is superior to 
human, being a powerful tool or equipment for substituting 
human works. A robot vision closely resembles human as far 
as technology progresses. Also, networking technology gives 
rise to tremendous change to human life, and it has been 
applied to a robot system by delivering a lot of commands and 
image data to a remotely placed robot in almost real time. In 
the light of an intelligent and efficient robot design, a virtual 
machine concept is applied to a robot system or manufacturing 
system, which is simulating a real system for enhancing the 
system performance [1, 5, 11]. A teleoperation, which is 
another effort to generate an efficient robot system, is 
accomplished by employing a networking [4,6,13].  

In this article, we present an integrated system, which 
remotely controls and monitors a real robot by introducing a 
virtual robot design, and a network communication program. 
A tracking control for a 2D moving target integrated with the 
above schemes is given an example to evaluate the system 
performance. The system, as stated again, encompasses a 
camera vision, a tracking algorithm based on the camera 
information, and a network communication delivering 
command data and real camera image. The virtual robot 
design adopted from the kinematics solutions is addressed 
which excludes a direct signal feedback from the real robot, 
enabling to prevent undesirable operations due to the image 
and data communication error in a remote operation, and the 
way of synchronization with the real robot is developed.  

The robot taken into consideration here is a serially 
articulated 5 dof type, and a vision camera is attached to the 
fifth link called a wrist. In this manner, a wider workspace can 
be guaranteed compared to a fixed camera system installed 
outside of the robot. A classical robot kinematics such as 
forward and inverse kinematics is employed to reach the target 
position which is identified by a camera image analysis.  

A virtual robot is mainly designed to resemble the motion 
of the real robot, which can contribute to preventing blockage 
ahead or hassle, and an undesirable path moving. All 
directional views can be examined by an operator’s choice just 

by dragging a mouse in the computer monitor, hence no longer 
relying on direct images coming from the cameras installed 
around the robot. All motions of the virtual robot are 
computed based on the robot kinematics, thus there might not 
be errors or malfunctions unless an operator handles 
improperly. The acquired image from the camera, which is 
caught by the wrist camera, is transferred to a PC to calculate 
the target position and velocity. The target tracking and 
grapping motions are also displayed on the virtual robot along 
with a real robot. The virtual robot is implemented by using an 
OpenGL tool in Visual C++ software [12].  

Networking technologies are employed to accomplish a 
remote operation, where the robot position and orientation are 
monitored through a remote window, so called a client 
computer. At the same time, a server program is provided to 
control the real robot. The monitoring and control programs 
on both server and client provide an easy operation whether an 
operator is located at remote place or at real robot. Since the 
camera image data possess a big size memory, appropriate 
data compression for network communication is needed, 
which enables to demonstrate movie images in almost real 
time. At the same time, the virtual robot generated at the 
server program also appears to the client program through a 
network. 

The article consists of robot system configuration, virtual 
robot development and its control method, target image 
analysis by robot vision, remote control, and monitoring based 
on networking. All subjects are systematically integrated in 
order to carry out a remote real time control and monitoring 
operation. 

 
2. System configuration 

 
A 5 dof articulate robot is employed to develop a remote 

control and monitoring system associated with 2D tracking 
control by a robot vision, virtual robot representation, and data 
communication in a networking. The robot is controlled by 
MMC (Multi Motion Controller) [10], where a library 
program is provided for a program development. A target is on 
the plate moving along x-y axes, which is controlled by two 
motor drivers. A camera is attached on the wrist, the fifth link, 
and it acquires instant image and transfers it to an image 
grabber connected to a PC. The 2D moving target the robot 
takes commands from the controller after the target is 
identified through a camera vision processing. At the same 
time, the robot motion associated with the tracking is 
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represented in the form of the virtual robot programmed by an 
OpenGL library in Visual C++. Finally, all motions are 
displayed both at the remote computer (as a client) and at the 
server computer through a networking communication.  

 
3. VIRTUAL ROBOT DESIGN 

3.1 Virtual robot structure 
In this article, we construct a virtual robot displaced on a 

computer monitor by utilizing an OpenGL software based on 
Visual C++.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1Virtual robot design flow in OpenGL 
 

By combining the OpenGL structure and the information of 
the robot kinematics, a virtual robot design is developed and 
its design procedures are shown in Fig. 1. The first step for 
building the virtual robot is to make it possess the same 
mechanism and kinematics with the real robot, and all 
geometric information on the real robot are stored in the form 
of “Vertex data” [12]. The vertex data from the real robot are 
transformed to generate another data to be fit on the computer 
monitor, matching with the rendered data through OpenGL. 
Finally every frame data for the virtual robot goes into the 
frame buffer, eventually appearing on the PC monitor.  

The virtual robot accompanying the above procedures is 
represented in Fig. 2. The kinematics of the real robot is surely 
employed to provide the virtual robot with correct data set. 
The frame speed is determined from the angular velocities of 
the 5 joints, which are coming from the operator’s predefined 
setup, not from direct angular velocities feedback. Usually, the 
operator just assigns average angular velocity for each joint to 
determine the frame speed. However, in a real robot operation, 
the robot takes appropriate acceleration/deceleration values in 
the starting and ending operations, which prevent an 
undesirable jerk and guarantee a smooth movement. In the 
sequel, there is an inevitable discrepancy between the real 
robot and the virtual robot as taking only average joint 
velocity. Therefore, synchronization between two robots is of 
importance, which indicates that two robots move identically 
at every step. Slightly different or wrong information gives 
rise to an unsatisfactory movement in the virtual robot. The 
frame generation speed for the virtual robot needs to be 
adjusted considering the acceleration/deceleration of the real 

robot, which is a crucial issue for a perfect synchronization 
between two robots, and the detail is explained in the later 
section. 

 

 
           Fig. 2 A virtual robot generation 
 

3.2 Virtual robot implementation 
The robot kinematics of the 5-dof robot is utilized to build 

the virtual robot, distinguishing other virtual robot design that 
takes feedback signals from the real robot by using a touching 
device or a cyber glove, called a direct reflective robot 
[1,5,11]. This kind of virtual robot has a disadvantage with 
regard to the undesirable operation such as an obstacle 
collision or a malfunction associated with data communication 
error. In other words, when the real robot moves more out of 
range or to an unspecified location, the virtual robot does not 
catch or predict the coming troubles since it just follows the 
positions and velocities of the real robot, hence an undesirable 
operation may not be avoided adequately in advance. 
Furthermore, a data communication error or misleading data 
set gives rise to a serious operation to the remote robot due to 
simple reliance on the feedback signals. To tackle this hassle, 
the virtual robot taking kinematics information from the real 
robot along with forward and the inverse kinematics is 
proposed here and it shows more reliable operation at the real 
robot than the virtual robot by direct feedback.  
3.3 Synchronization between real robot and virtual 
robot 

 When the target position and the orientation for gripping 
are determined, which are expressed by the end-effector 
coordinate, the associated set of joint angles for each joint 
is computed based on the inverse. In computing velocities 
for the 5 axes to synchronize the real robot and virtual 
robot, average velocities which divide the distance to the 
target by the desired time to reach the target is used in an 
initial try. In a real robot operation, however, some 
amounts of acceleration and deceleration are imposed on 
the robot motion control to make a smooth start and stop. 
On the other hand, the virtual robot only takes constant 
increment per every step, simply from the average 
velocity. From the point of view that the virtual robot 
should follow the real robot; the close arrival to the final 
destination and synchronized motion at every motion 
frame may not be accomplished by simple average 
velocity set for each joint, yielding a discrepancy between 
two robots. Therefore, the acceleration and deceleration 
actually need to be taken into consideration in generating 
the virtual robot in order to synchronize two robots. In 
Fig.3, the acceleration/deceleration compensation is 
illustrated, which makes the areas of two velocity patterns 
(as denoted as real and virtual robot velocity patterns in 
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Fig. 3) be identical by decreasing the initial constant 
averaged velocity of the virtual robot. Ultimately, this 
scheme, even if it looks simple, results in diminishing 
discrepancy between two robots, and whole experimental 
data based on this scheme is shown in later section. 

at  
and 

dt  in Fig.3 represent the end time of acceleration 
range and the starting time of deceleration range, 
respectively.   

 
  
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 Acceleration/deceleration compensation for a 
virtual robot 
 

With compensating the acceleration/deceleration, the 
virtual robot can reach the target at the same time as the 
real robot does even if the intermediate motions between 
two robots do not exactly match, but averagely being 
synchronized.  

 
 
 
 
 
 
 

 

 

 

 

 

 

 

Fig. 4 Procedures of displaying position of the virtual 
robot  
 

The procedures for the virtual robot representation are 
summarized in Fig. 4.  Let θ∆ , Tθ , and Nθ  be the 
joint movement, joint target, and current joint angle, 
respectively. T , and st are the approaching time to the 
target, and the sampling time. For every sampling time, the 
virtual robot moves by the amount of 

Iθ , joint velocity 
increment, through which the virtual robot motion is 
displayed to be synchronized with the real robot if the 
deficiency is decreased sufficiently.  

3.3 Target tracking algorithm 
  The coordinates for camera image (x and y axes) and 
robot are usually set by different coordinates. To identify 
the target, a coordinate transform between two 
coordinates is needed. Basically, the camera coordinate is 
differently scaled with the robot coordinate and y-axes  
are reversed each other. When the robot receives the 
command for target gripping, it moves fast to the position 
where the camera starts taking a shot. From then, z 
direction of the end-effector is fixed, only x and y axis 
movements of the robot are involved to take shots. The 
camera utilized in this experimental setup has 320x240 
pixels and the working space of the robot (target space) 
corresponds to 240mm width (x axis) and 170mm height 
(y axis). Therefore, one pixel along x-axis is 
240/320=0.75 mm/pixel, and along y-axis is 
170/240=0.70833 mm/pixel, respectively. 

For a 2D tracking, a target location needs to be 
estimated first where it will reach at specified time. When 
this location is estimated, the robot gripper should reach 
the expected target location in advance before the target 
arrives, and stands by until the target passes the gripping 
location determined from the estimation. Finally, the 
gripper grips the approaching target instantly by lowering 
down the robot and closing the gripper. 

Suppose the target travels along x and y axes with 
constant velocities within a workspace, not necessarily 
equal, i.e., x and y axis velocities can be set differently by 
moving a x-y table with different velocities. The velocity 
of the moving target is calculated based on two points 
identified from the camera shots with appropriate time 
interval. Later, the target is assumed to keep this velocity 
until captured at the specified location.  

 Now the locations of the two image shots are 
designated by ),(  ),,( 222111 yxQyxQ , and the gripping 
location by ),( 333 yxQ as illustrated in Fig. 10.  

 

 

 

 

 

 

 

 

 

 Fig. 5 Locations of moving target for camera image 
shots  

Also, the distance between  1Q and  2Q is 
assigned as  1l , and between  2Q and  3Q is by  2l . 
Then  1l is easily calculated as 
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The target velocity  v  is computed when the camera 
shot time between  1Q and  2Q is given as  1t   
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Because the target velocity is assumed constant, the 
gripping location  )( 333 ,yxQ can be computed when the 
gripping time is given  2t after the second shot as follows  
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Of course, the assumption that the target velocity keeps 
constant does not seem to be realistic in general target tracking 
problem, but in a limited 2D operation such as a conveyor or a 
logistic system the moving target or object can be constrained 
with a constant velocity. For gripping a moving target, there 
are several algorithms. A generally known algorithm is to 
follow the target directly by continuously taking camera shots 
and identifying where it moves, and the other way is to 
increase the number of shots to get more precise location and 
velocity changes. However, to catch exact location of the 
target as it moves, these ways require complicated camera 
image identification schemes and minimum processing time to 
align the identified location by image processing with the real 
target location. To rely on these schemes ultimately requires 
highly costly equipments and large computational load. On the 
other hand, in this article, an integrated system development 
for a remote control and monitoring along with a virtual robot 
and network communication is a primary issue, hence a 
relatively simple algorithm of gripping the moving target is 
adopted to verify the performance of the integrated system.  

 

4. NETWORK COMMUNICATION 

When a remote operation and monitoring is 
considered, the command from a remote operator needs 
to be executed in real time, and the camera image for 
monitoring a target should be transferred to the operator 
without a serious time delay. At the same time, the 
motion of the designed virtual robot should match with 
the real robot as exactly as possible, eventually delivering 
it such that an operator recognizes in an almost real time 
base. To communicate between the operator and the robot, 
all information is transferred through a network, which 
prevails in a communication world. In this article, 
WinSock API (Windows Socket Application 
Programming Interface) is adapted to transfer data and 
image between on-site PC (real robot location) and 
remote PC (operator side) through a network. Two 
protocols exist at a transport layer served in the API, 
namely TCP and UDP, which possess a stream type 
socket and a datagram type socket, respectively [9]. The 
stream type socket is a connection-oriented socket that 
two process sockets are surely open before 
communication starts. On the other hand, the datagram 

type socket is a connectionless socket that does not 
require socket opening before communication, hence it 
guarantees fast data transfer even if there could be a 
possibility of imprecise data delivery.  In this article, the 
latter socket is employed to ensure a fast data transfer for 
image data even if there might be a slight image 
distortion as long as the image remains within a 
discernible range. On the other hand, the command data 
not requiring large sized data, crucial for a precise 
operation, can be exactly delivered by this protocol. For a 
visualized operation, a sever and a client program are 
developed, which both encompass robot vision, virtual 
robot via OpenGL, and network.  

4.1 Server and client programs 
  A server program consists of a robot vision, virtual robot, 
and network program, which dedicates to monitoring and 
controlling the real robot directly. At the left figure of 
Fig.6, a camera monitor is displayed on the left top menu, 
and a virtual robot is on the right top. The robot control 
buttons are shown on the middle, and robot axes data are 
displayed on the bottom.   
 
 
 
 
 
 
 
 
4.2. Client program 
 Fig. 6 A server program (left) and a client program (right) 
through network based control and monitoring 
 

A client program displays information coming from a 
server through a network, and also controls the server program. 
The camera image data are transferred to the server first, and 
later delivers to the client after feasible data compression by 
JPEG format [8], accomplishing a real time monitoring. The 
structure of the client program is similar to the server program 
in respect of encompassing real camera image, virtual robot, 
robot control commands, and axes angles information. On the 
right side of the Fig.6, the developed server program is 
illustrated. Here, it is proven that the camera image, virtual 
robot, and axes data are all transferred via a network without 
significant time delay or data distortion.  

 
5. EXPERIMENAL RESULTS 

5.1 Synchronization between real robot and virtual 
robot 
  In order to estimate the arrival time for the end-effector to 
reach to the target position, repetitive experiments are done. 
The time is dependent on where the target locates, and it is 
approximately within 2 sec for a current experiment setup, 
indicating the target needs to be gripped in this time range. As 
the target velocity increases, the arrival time decreases. 
Therefore the robot should move fast to track the target. 
Nevertheless, the target should not escape from the range of 
the camera image frame. It is indicative that the camera shots 
to estimate a location of the target for gripping should be done 
before the target image disappears from the image frame. At 
the same time, during the robot tracking for the 2D moving 
target gripping, the virtual robot motion should follow the real 
robot, which can be done by updating new frame with 

N
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appropriate increment rate, eventually synchronizing with the 
real robot.  

Two cases for a virtual robot movement to see how they 
synchronize are done: without acceleration/deceleration 
compensation and with compensation. First, when the 
acceleration/deceleration is not compensated, just taking the 
average joint velocity, there is some amount of deficiency 
between the real robot and the virtual robot as shown in Fig. 7. 
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  Fig. 7 Deficiency of joint angles between real robot 
and virtual robot two robots (without accel/decel 
compensation) 

Considering the encoder output used in this experiment, 
where 1 degree corresponds to 2275 pulses, it implies that 
the error between two robots is not much serious even if the 
compensation is not made. Now, to obtain more accurate 
synchronizing between two robots, the 
acceleration/deceleration compensation is adopted as stated 
in the previous section, showing less error for every joint as 
plotted as in Fig.7. These results are done for three locations 
(far, medium, and near from the reference frame: denoted by 
1,2,3 in horizontal axis), ensuring that the errors are 
remarkably diminished compared with the non-compensated 
case.  
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Fig. 8 Deficiencies of two robots for different target 
locations (with accel/decel compensation) 

As the target location is far from the starting position, the 
moving velocity of the robot increases to reach there within 
specified time, causing larger deficiency than the near target 
location. But we do not change the velocity of the virtual 
robot for the far location tracking especially, just making 
acceleration/deceleration compensation by adjusting the 
average velocity. By virtue of this, the deficiency for every 
location becomes much smaller than the non-compensated 
case.  This provides almost perfect synchronization 
between two robots. Fig. 8 illustrates the demonstration how 
two robots are synchronizing. However, even after the 
compensation, we see still quite small synchronizing error. 
This is mostly from the mechanical delay at start and stop 

stages due to the substantial amount of frictions at each joint, 
which can be somehow inevitable. 

 

  

 

 

 
Fig. 8 Demonstration for synchronization of two 
robots: (a) Real robot  (b) Virtual Robot 

 

6. CONCLUSIONS 
We have presented several outcomes regarding to the remote 

robot monitoring and control that encompasses a virtual robot 
design and its synchronization with the real robot, 2-D moving 
target tracking through a camera image processing, and 
network communication between client and server. All 
subjects are integrated systematically to implement a real time 
control and monitoring of a robot. Acceleration/deceleration 
compensation is introduced to accomplish the precise 
synchronization between two robots. With the help of the 
virtual robot, which utilizes robot kinematics, undesirable 
operations are predicted in advance compared with the system 
relying on the direct feedback of sensor signals. System 
performance for a remote operation is verified by showing an 
example of 2D tracking problem associated with many 
functions such as camera vision, virtual robot design, and 
remote data communication on network. All functions are 
mutually screened whether they are reciprocally connected to 
surmount obstacles in terms of data delay or undesirable 
operation due to miscommunication.  
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