• Title/Summary/Keyword: remote plasma

Search Result 143, Processing Time 0.023 seconds

A Study on High Speed Laser Welding by using Scanner and Industrial Robot (스캐너와 산업용 로봇을 이용한 고속 레이저 용접에 관한 연구)

  • Kang, Hee-Shin;Suh, Jeong;Kim, Jong-Su;Kim, Jeng-O;Cho, Taik-Dong
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.29-29
    • /
    • 2009
  • On this research, laser welding technology for manufacturing automobile body is studied. Laser welding technology is one of the important technologies used in the manufacturing of lighter, safer automotive bodies at a high level of productivity; the leading automotive manufacturers have replaced spot welding with laser welding in the process of car body assembly. Korean auto manufacturers are developing and applying the laser welding technology using a high output power Nd:YAG laser and a 6-axes industrial robot. On the other hand, the robot-based remote laser welding system was equipped with a long focal laser scanner system in robotic end effect. Laser system, robot system, and scanner system are used for realizing the high speed laser welding system. The remote laser welding system and industrial robotic system are used to consist of robot-based remote laser welding system. The robot-based remote laser welding system is flexible and able to improve laser welding speed compared with traditional welding as spot welding and laser welding. The robot-based remote laser systems used in this study were Trumpf's 4kW Nd:YAG laser (HL4006D) and IPG's 1.6kW Fiber laser (YLR-1600), while the robot systems were of ABB's IRB6400R (payload:120kg) and Hyundai Heavy Industry's HX130-02 (payload:130kg). In addition, a study of quality evaluation and monitoring technology for the remote laser welding was conducted. The welding joints of steel plate and steel plate coated with zinc were butt and lapped joints. The quality testing of the laser welding was conducted by observing the shape of the beads on the plate and the cross-section of the welded parts, analyzing the results of mechanical tension test, and monitoring the plasma intensity and temperature by using UV and IR detectors. Over the past years, Trumf's 4kW Nd:YAG laser and ABB's IRB6400R robot system was used. Nowadays, the new laser source, robot and laser scanner system are used to increase the processing speed and to improve the efficiency of processes. This paper proposes the robot-based remote laser welding system as a means of resolving the limited welding speed and accuracy of conventional laser welding systems.

  • PDF

Hydrogenated Amorphous Silicon Thin Films as Passivation Layers Deposited by Microwave Remote-PECVD for Heterojunction Solar Cells

  • Jeon, Min-Sung;Kamisako, Koichi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.75-79
    • /
    • 2009
  • An intrinsic silicon thin film passivation layer is deposited by the microwave remote-plasma enhanced chemical vapor deposition at temperature of $175^{\circ}C$ and various gas ratios for solar cell applications. The good quality amorphous silicon films were formed at silane $(SiH_4)$ gas flow rates above 15 seem. The highest effective carrier lifetime was obtained at the $SiH_4$, flow rate of 20 seem and the value was about 3 times higher compared with the bulk lifetime of 5.6 ${\mu}s$ at a fixed injection level of ${\Delta}n\;=\;5{\times}10^{14}\;cm^{-3}$. An annealing treatment was performed and the carrier life times were increased approximately 5 times compared with the bulk lifetime. The optimal annealing temperature and time were obtained at 250 $^{\circ}C$ and 60 sec respectively. This indicates that the combination of the deposition of an amorphous thin film at a low temperature and the annealing treatment contributes to the excellent surface and bulk passivation.

The Properties and Uniformity Change of Amorphous SiC:H Film Deposited using Remote PECVD System with Various Deposition Conditions (원거리 플라즈마 화학기상증착법을 사용하여 증착한 비정질 탄화규소 막의 증착조건에 따른 특성 및 증착 균일도 변화)

  • Cho, Sung-Hyuk;Choi, Yoo-Youl;Choi, Doo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.262-267
    • /
    • 2010
  • a-SiC has been thought as an ideal candidate for conventional silicon at many applications. However, the uniformity problem of deposition has been a obstacle for conventional use of a-SiC:H films. a-SiC:H films were deposited on (100) silicon wafer by RPECVD system in various temperature. HMDS and $H_2$ gas were used as a precursor and a carrier gas, respectively. The flow rate of HMDS source and $C_2H_2$ dilution gas was fixed in order to study the carbon effect on the film stoichiometric and bonding properties. The plasma power varied from 200 to 400W. We used three types of source delivery line to control the uniformity and film properties of deposited film. We showed that the change of source delivery line has effect on the film uniformity of deposited film and this change of line did not affect on film properties. Also, the change of deposition conditions has effect on the film uniformity.

HC-06 Bluetooth based driver module for emergency LED Multi-Directional Indicator

  • Jung, Joonseok;Kwon, Jongman;Mfitumukiza, Joseph;Jung, Soonho;Lee, Minwoo;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.114-119
    • /
    • 2017
  • In this paper we present the search on HC-06 Bluetooth based driver module for emergency LED Multi-Directional Indicator. Nowadays, a growing trends in which electronic displays such as LED, LCD or plasma monitors are being installed in public places like bars, stores, entertainment areas, restaurants, lobbies, etc. In this paper, the study is curried out on efficiency of HC-06 Bluetooth module based controller driver that relates generally to the field of emergency signage management systems for displaying various indicator contents remotely on electronic displays in public and privates venues. It allows user smart devices interaction remotely with digital signage by providing content for displaying on at least one display in a venue. Depending on the emergency case, HC-06 Bluetooth based driver module proves the high efficiency as well as good performance of processing and communicating remotely the indicator based message that is displayed from a venue management control system by using smart devices. The system combines smart device that linked to HC-06 Bluetooth module with ATmega168/328 embedded micro controller which result by switching the displayer containing the digital signage indicator based message.

내장형 무선 카메라를 이용한 high vacuum system 내부 실시간 모니터링

  • Choe, Ji-Seong;Hong, Gwang-Gi;Yang, Won-Gyun;Ju, Jeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.116-116
    • /
    • 2010
  • 진공 chamber에서 방전된 plasma 내부를 외부 view port를 통하여 확인하는 것은 극히 제한적이며 leak의 확률을 높이고 plasma의 균일한 방전을 방해한다. 이를 개선하기 위하여 내장형 무선 카메라를 chamber 내부에 위치한 후 고진공 영역에서 촬영을 시도하였으나 일반적인 CCD 카메라로는 촬영할 수 없다. 고진공 영역에서 카메라 내부온도의 급격한 상승이 원인으로 밝혀졌고 적정온도인 $45^{\circ}C$를 초과하여 최대 $96^{\circ}C$까지 4 min 이내에 상승함을 IR camera로 확인할 수 있었으며 이 때 카메라가 작동하지 않았다. 또한 카메라를 고진공 영역에서 촬영 및 녹화하기 위해서는 $46^{\circ}C$의 온도를 낮추어야 함을 진공해제 이후 내부온도가 $50^{\circ}C$로 감소하면서 내장형 무선 카메라가 다시 작동함으로 인해 알 수 있었다. 본 연구에서는 이를 해결하기 위하여 내장형 무선 카메라에 AM 변조 방식의 311 MHz RF remote controller를 장착하여 외부에서 선택적으로 ON/OFF 할 수 있도록 개조하였고 10 L chamber에서 150 L/sec TMP를 이용하여 10-6 Torr의 압력에서 성공적으로 녹화 및 촬영하였다. 또한 내장형 무선 카메라 내부의 반도체 회로 규격 및 발열량과 heat sink의 규격 (열전도도, 복사율)을 추가로 조사하였다. 분자유동 영역에서 열전달은 복사에 의한 영향이 대부분이므로 내장형 무선 카메라 내부 온도를 감소시켜 카메라의 작동 시간을 연장하기 위하여 내부 회로에 emissivity가 높고 전기전도도가 낮아 회로에 영향이 없는 박막을 회로에 증착시키는 추후의 연구가 필요하다.

  • PDF

Effect of N2/Ar flow rates on Si wafer surface roughness during high speed chemical dry thinning

  • Heo, W.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.128-128
    • /
    • 2010
  • In this study, we investigated the evolution and reduction of the surface roughness during the high-speed chemical dry thinning process of Si wafers. The direct injection of NO gas into the reactor during the supply of F radicals from NF3 remote plasmas was very effective in increasing the Si thinning rate, due to the NO-induced enhancement of the surface reaction, but resulted in the significant roughening of the thinned Si surface. However, the direct addition of Ar and N2 gas, together with NO gas, decreased the root mean square (RMS) surface roughness of the thinned Si wafer significantly. The process regime for the increasing of the thinning rate and concomitant reduction of the surface roughness was extended at higher Ar gas flow rates. In this way, Si wafer thinning rate as high as $20\;{\mu}m/min$ and very smooth surface roughness was obtained and the mechanical damage of silicon wafer was effectively removed. We also measured die fracture strength of thinned Si wafer in order to understand the effect of chemical dry thinning on removal of mechanical damage generated during mechanical grinding. The die fracture strength of the thinned Si wafers was measured using 3-point bending test and compared. The results indicated that chemical dry thinning with reduced surface roughness and removal of mechanical damage increased the die fracture strength of the thinned Si wafer.

  • PDF

SELF-PALSMA OES의 능동형 오염 방지 기법

  • Kim, Nam-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.82.1-82.1
    • /
    • 2013
  • SPOES(Self Plasma Optical Emission Spectroscopy)는 반도체 및 LCD 제조 장비의 Foreline에 장착되는 센서로써, Foreline에 흐르는 Gas를 이온화시켜 이때 발생되는 빛을 분광시켜 공정의 상태 및 장비의 상태등을 종합적으로 점검할 수 있는 센서입니다. SPOES의 최대 장점은 공정 장비에 영향을 주기 않으면서 공정을 진단할 수 있고, 장비의 메인챔버에서 플라즈마 방전이 발생하지 않는 RPS (Remote Plasma System)등에 적용이 가능하며, 설치 및 분해이동과 운용이 용이한 장점이 있습니다. 하지만, SPOES는 오염성 가스 및 물질에 의한 오염에 취약한 단점이 있습니다. 예컨대, 플라즈마 방전에 의한 부산물들이 SPOES의 내부에 있는 윈도우의 렌즈에 부착되어 감도를 저하시켜, SEOES의 수명을 단축시킵니다. 또한 오염 물질이 SPOES 내부의 방전 CHAMBER에 증착되어 플라즈마 방전 효울을 저하시켜 센서의 효율을 저하시킵니다. 예를들면, 장비의 공정 챔버에서 배출되는 탄소와 같은 비금속성 오염물질과 텅스텐과 같은 금속성 오염물질이 SPOES의 방전 CHAMBER 내벽과 윈도우에 증착되어 오염을 유발합니다. 오염이 진행된 SPOES는 방전 CHAMBER의 오염으로 CHAMBER의 유전율을 변화시켜, 플라즈마 방전 효율의 저하를 가져오고, 윈도우의 오염은 빛의 투과율을 저하시켜, OES 신호의 감도를 저하시켜, SPOES 감도를 저하시키는 요인으로 작용합니다. 이러한 문제를 해결하기위한 방법으로 능동형 오염 방지 기술을 채용 하였습니다. 능동형 오염 방지 기법은 SPEOS의 방전 챔버에서 플라즈마 방전시 발생하는 진공의 밀도차를 이용하는 기술과 방전 챔버와 연결된 BYPASS LINE에 의해 발생되는 오염물질 자체 배기 시스템, 그리고 고밀도 플라즈마 방전을 일으키는 멀티 RF 기술 및 고밀도 방전을 일으키는 챔버 구조로 구성 되어 있습니다. 능동형 오염 방지 기법으로 반도체 공정에서 6개월 이상의 LIFETIME을 확보 할 수 있고, 고밀도 플라즈마로 인한 UV~NIR 영역의 감도 향상등을 확보 할 수 있습니다.

  • PDF

A Brief Introduction of Current and Future Magnetospheric Missions

  • Yukinaga Miyashita
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.1-25
    • /
    • 2023
  • In this paper, I briefly introduce recently terminated, current, and future scientific spacecraft missions for in situ and remote-sensing observations of Earth's and other planetary magnetospheres as of February 2023. The spacecraft introduced here are Geotail, Cluster, Time History of Events and Macroscale Interactions during Substorms / Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (THEMIS / ARTEMIS), Magnetospheric Multiscale (MMS), Exploration of energization and Radiation in Geospace (ERG), Cusp Plasma Imaging Detector (CuPID), and EQUilibriUm Lunar-Earth point 6U Spacecraft (EQUULEUS) for recently terminated or currently operated missions for Earth's magnetosphere; Lunar Environment Heliospheric X-ray Imager (LEXI), Gateway, Solar wind Magneto-sphere Ionosphere Link Explorer (SMILE), HelioSwarm, Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM), Geostationary Transfer Orbit Satellite (GTOSat), GEOspace X-ray imager (GEO-X), Plasma Observatory, Magnetospheric Constellation (MagCon), self-Adaptive Magnetic reconnection Explorer (AME), and COnstellation of Radiation BElt Survey (CORBES) approved for launch or proposed for future missions for Earth's magnetosphere; BepiColombo for Mercury and Juno for Jupiter for current missions for planetary magnetospheres; Jupiter Icy Moons Explorer (JUICE) and Europa Clipper for Jupiter, Uranus Orbiter and Probe (UOP) for Uranus, and Neptune Odyssey for Neptune approved for launch or proposed for future missions for planetary magnetospheres. I discuss the recent trend and future direction of spacecraft missions as well as remaining challenges in magnetospheric research. I hope this paper will be a handy guide to the current status and trend of magnetospheric missions.

Low temperature growth of GaN on sapphire using remote plasma enhanced-ultrahigh vacuum chemical vapor deposition

  • Park, J.S.;Kim, M.H.;Lee, S.N.;Kim, K.K.;Yi, M.S.;Noh, D.Y.;Kim, H.G.;Park, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.85-99
    • /
    • 1998
  • A ultrahigh vacuum chemical vapor deposition(UHVCVD)/metalorganic chemical vapor deposition(MOMBE) system equipped with a radio frequency(RF)-plasma cell was employed to grow GaN layer on the sapphire at a low temperature. The x-ray photoelectron spectroscopy analysis of nitrogen composition on the nitridated sapphite surface indicated that a nitridation process is mostly affected by the RF power at low temperature. Atomic force microscope images of nitridated surface the protrusion density on the nitridated sapphire is dependent on the nitridation temperature. The crystallinity of GaN grown at $450^{\circ}C$ was found to be much improved when the sapphire was nitridated at low temperature prior to the GaN layer growth. Moreover, a strong photoluminescence spectrum of GaN grown by UHVCVD/MOMBE with a rf-nitrogen plasma was observed for the first time at room temperature.

  • PDF

The study of direct ${\mu}c$-Si:H film growth using RPCVD system in low temperature (RPCVD system을 이용한 ${\mu}c$-Si:H의 저온 직접 성장 연구)

  • Ahn, Byeong-Jae;Kim, Do-Young;Lim, Dong-Gun;Yi, Jun-Sin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1818-1820
    • /
    • 1999
  • This paper presents direct ${\mu}c$-Si:H thin film growth on the glass substrates using RPCVD system (remote plasma chemical vapor deposition) in low temperature. Hydrogenated micro-crystalline silicon deposited by RPCVD system in low temperature is very useful material for photovoltaic devices, sensor applications, and TFTs (thin film transistors). Varying the deposition conditions such as substrate temperature, gas flow rate, reactive gas ratio $(SiH_4/H_2)$, total chamber pressure, and rf power, we deposited ${\mu}c$-Si:H thin films on the glass substrates (Corning glass 1737). And then we measured the structural and electrical properties of the films.

  • PDF