• Title/Summary/Keyword: reinforced retaining wall

Search Result 218, Processing Time 0.033 seconds

Behavior of Reinforced Earth Retaining Wall for Connector System Driving the Settlement of Reinforcement (보강재 침하를 허용하는 연결시스템을 적용한 보강토옹벽의 거동)

  • Jong-Keun Oh;Jeong, Jong-Gi;Lee, Song
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.156-161
    • /
    • 2006
  • Recently, construction of soil-reinforced segmental retaining walls which used geosynthetics are being increased day by day due to its construction efficiency, economic efficiency, and its aesthetic view. The conventional reinforced earth retaining wall has the connector system to fix the reinforcement and block However, this system may cause the crack of block and the rupture of reinforcement due to the stress concentration near the face of reinforced earth retaining wall In this study, the new connector system, which is able to allow the settlement of reinforcement, was applied to analyze the effect of connector system of reinforced earth retaining wall The connection strength tests and centrifugal tests for both the conventional reinforced earth retaining wall and the settlement reinforced earth retaining wall were performed to compare the results

  • PDF

Evaluation of Stability in reinforced Earth Retaining Wall by Vehicle Collision (차량 충돌에 의한 보강토 옹벽의 안정성 평가)

  • Ahn, Kwangkuk;Heo, Yol;Hong, Kinam;Ahn, Minsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.39-46
    • /
    • 2010
  • The past studies on reinforced earth retaining wall have been mostly focused on the internal and external failure of reinforced earth retaining wall, and the research for external impact was limited on earthquake. However, the potential external impact such as vehicle collision to reinforced earth retaining wall near the road are increasing with development of roads. Therefore, in this study, the reinforced earth retaining wall was modeled by using LS-DYNA, which is a general purpose finite element program recognized for its reliability. The behavior of reinforced earth retaining wall by vehicle speed was analyzed with Ford single unit truck offered by NCAC (National Crash Analysis Center), which is 8 tons weight. In addition, in order to obtain stability of reinforced earth retaining wall for vehicle collision, the gravity retaining wall was applied at the bottom of reinforced earth retaining wall. With varying the height of retaining wall (0.5m, 1.0m, 1.5m), the numerical study was performed to analyze the stability and behavior of reinforced earth retaining wall.

Evaluation of Stability for Settlement Free Reinforced Earth Retaining Wall by Centrifuge Model Tests (원심모형실험에 의한 침하자유형 보강토 옹벽의 안정성 평가)

  • Ahn, Kwangkuk;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.23-34
    • /
    • 2006
  • In this study, the centrifugal tests were performed to evaluate the behavior of reinforced retaining wall that allows the settlement of reinforcement strip. To analyze the stability of reinforced retaining wall, which drives the settlement of reinforcement strip, the results were compared with the conventional reinforced retaining wall. In the centrifugal tests, the aluminum plate for the face was used and the aluminum foil was used as a reinforcement. The decomposed granite soil was adopted as a backfill. As a result, the settlement free reinforced retaining wall reached to the failure at 80g-level. In contrast, the conventional reinforced retaining wall was collapsed at 69g-level. It means that the settlement free reinforced retaining wall has the stronger stability than the conventional reinforced retaining wall. Also, vertical earth pressure of the settlement free reinforced retaining wall near the base of wall was higher 16% than that of the conventional reinforced retaining wall.

  • PDF

Evaluation of Effect for Connector System in Reinforced Earth Retaining Wall (보강토 옹벽에서 연결시스템의 영향성 평가)

  • Lee, Jun-Dae;Heo, Yol;Ahn, Kwang-Kuk;Lee, Yong-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.85-94
    • /
    • 2006
  • In this study, in order to evaluate the effect of two types of connector systems in reinforced retaining wall, the centrifugal tests for the conventional connector and new settlement connector system were performed. In the centrifugal tests, the aluminum plate for the face was used and the aluminum foil was used as a reinforcement. The granite soil was adopted as a fill. As a result, The settlement reinforced retaining wall reached to the failure at 80g-level. In contrast, the conventional reinforced retaining wall was collapsed at 69g-level. It means that the settlement reinforced retaining wall has the stronger stability than the conventional reinforced retaining wall. In addition, it was shown that the settlement connector system is more effective to release the stress concentration occurred at the face of reinforced retaining wall than the conventional connector system.

Analysis of the Behavior of Tiered Reinforced Soil Retaining Wall Considering the Offset Distance by Surcharge Load (상재하중 이격거리에 따른 다단식 보강토옹벽의 거동특성 분석)

  • Han, Jung-Geun;Kim, Ji-Sun;Hong, Ki-Kwon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.4
    • /
    • pp.31-40
    • /
    • 2007
  • Recently, the scale in the field of reinforced soil retaining wall has been grown up like tiered reinforced soil retaining wall. However, there have been increasing number of collapse accidents and large scale of collapse. The design manual adopted in the construction fields have been inconsistent in tiered reinforced soil retaining wall. Therefore, this study performed finite element analysis on 90 cases and analyzed characteristic behavior of lower wall which was one of the effect factors on the stability of tiered reinforced soil retaining wall. The facing displacement of each walls and the behavior of the whole ground were interpreted by the numerical analysis depending on the lower offset distance by the upper wall as well as the upper offset distance by the surcharge load. The results showed that the behavior of tiered reinforced soil retaining wall was differed by condition of surcharge load and each offset distance was found to be important factor.

Reinforced Earth Retaining Wall of The Collapsed-A Case Study. (보강토옹벽의 사고사례에 관한 연구)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang;Lee, Soung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.958-967
    • /
    • 2004
  • This paper deal with cause and analysis about case of collapsed reinforced-soil retaining wall. The analysis of the cause was carried through experimentation, slop stability analysis and literature study. The experimentation treated the large direct shear test, the hydraulic conductivity test and the other basic test through backfill extracted from collapsed reinforced-soil retaining wall. The ultimate tensile strength was established by rib tensile strength test of geogrid. The analysis of internal and external stability of reinforced-soil retaining wall was performed on the basis of parameters. The result of analysis, reinforced-soil retaining wall and the slope at the dry season are stable. However, the factors that fine-grained soil at hydrometer test exceed the standard of the design, rainfall duration is too long at the time of collapse and monthly pricipitation is heavy are cause of the collapse.

  • PDF

Settlement Reduction Effect of Advanced Back-to-Back Reinforced Retaining Wall

  • Koh, Taehoon;Hwang, Seonkeun;Jung, Hunchul;Jung, Hyuksang
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.107-111
    • /
    • 2013
  • In order to constrain the railway roadbed settlement which causes track irregularity, and thus threats running stability and ride quality, advanced Back-to-Back (BTB) reinforced retaining wall was numerically analyzed as railway roadbed structure. This study is intended to improve conventional Back-to-Back reinforced retaining wall as the technology which would reduce the roadbed settlement in a way of constraining the lateral displacement of its prestressed vertical facing and inducing arching effects in roadbed (backfill) placed between masonry diaphragm wall and vertical facing. As a result of numerical analysis, it was found that the roadbed settlement was reduced by 10% due to the prestressed vertical facing and embedded masonry diaphragm wall of the advanced Back-to-Back reinforced retaining wall system.

A Case study on reinforced retaining wall backfilled by soil cement (쏘일시멘트 보강토옹벽 사례 연구)

  • Lee, Myung-Jae;Jang, Ki-Soo;Lee, Jin-Hwan;Paik, Min-Cheol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.985-994
    • /
    • 2004
  • The application of the reinforced retaining wall has increased in the last 10 years in Korea. The height of reinforced wall is generally limited to less than 15m. It has been reported that the reinforced wall higher than 10m should have higher strength reinforcement or should reduce the lateral earth pressure of the reinforced wall to secure the stability of the wall. In this study, the reinforced retaining wall was constructed 14m high, backfilled by a mixture of soil and cement and instrumented on the reinforcement elements. The instrumented reinforced wall was monitored during and after construction. Field monitoring result shows that a backfill by a mixture of soil and cement reduced the tensile stress developed on the reinforcing elements and the reinforced wall backfilled by a mixture of soil and cement performed successful.

  • PDF

Instrumentation of A Two-Level of Soil-Reinforced Segmental Retaining Wall (계단식 지오그리드 보강토 옹벽의 계측)

  • 유충식;정혁상
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.697-704
    • /
    • 2002
  • This paper presents the results of instrumentation of a two-level of soil-reinforced segmental retaining wall. Instrumentation items include the lateral wall displacements and the geogrid strains at several locations. The instrumentation is still long carried in order to examine long-term behavior. The result indicate that the upper wall has a significant effect on the behavior of the lower wall doubling the wall moved. The wall also exhibits significant post-construction movements that had ceased several months after the wall completed. The implication of the findings from this study was discussed in great detail.

  • PDF

Case Study of Environmental Segmental Retaining Wall(SRW) Using Greenstone Block (환경친화적 블록식 보강토옹벽의 설계 및 시공사례연구)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.6
    • /
    • pp.19-28
    • /
    • 2004
  • Segmental Retaining Wall(SRW) has been variously applying in Civil and Architecture construction. Recently, the application of environmental element in all type's structures came to essential requirement, and the construction cases of retaining wall using reinforced soil and block are more increased than the past. But, this trend more widely was spread environmental element as landscape work for the backside of reinforced retaining wall as well as block itself. New environmental block, Greenstone Block, developed to apply of this tendency. The retaining wall system using Greenstone can be environmental constructing at both block itself and backside of retaining wall. The material tests, the axial compressive strength test of block and bending test of fiber-pipe, exercised to design and construction of vertical SRW, which were satisfied NCMA standard. Through this procedure, Rewall (ver 1.0) was developed, which can be automation design of SRW including internal stability, external stability and local stability. And these can be considered setback of retaining wall, as well the examples of vertical retaining wall using block presented to satisfying the follows; strength of reinforced geotextile, height of retaining wall, surcharge, types of backfill and groundwater level etc. Many problems investigated on after or before of construction were due to local failure, insufficiency of bearing capacity and groundwater level. Especially, the local failure was many occurred to during compaction or after construction, and the cases of SRW construction is similar to the results of model test on vertical SRW.