• Title/Summary/Keyword: reinforced concrete plate member

Search Result 28, Processing Time 0.02 seconds

A Study on the Service Load State Behavior of Reinforced Concrete Plate Member

  • Bhang, Jee-Hwan;Kang, Won-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.55-72
    • /
    • 2000
  • This paper proposes a mechanical model to describe the load-deformation responses of the reinforced concrete plate members under service load state. An Analytical method is introduced on the basis of the rotating crack model which considers equilibrium, compatibility conditions, load-strain relationship of cracked member, and constitutive law for materials. The tension stiffening effect in reinforced concrete structures is taken into account by the average tensile stress-strain relationship from the load-strain relationship for the cracked member and the constitutive law for material. The strain compatibility is used to find out the crack direction because the crack direction is an unknown variable in the equilibrium and compatibility conditions. The proposed theory is verified by the numerous experimental data such as the crack direction, moment-steel strain relationship, moment-crack width relationship. The present paper can provide some basis for the provision of the definition of serviceability for plate structures of which reinforcements are deviated from the principal stresses, because the present code defines the serviceability by the deflection, crack control, vibration and fatigue basically for the skeletal members. The proposed theory is applicable to predict the service load state behavior of a variety of reinforced concrete plate structures such as skew slab bridges, the deck of skew girder bridges.

  • PDF

An Experimental Study on Flexural/Shear Load Properties of SC(Steel Plate Concrete) Structure with Reinforced Concrete Joint (강판콘크리트 구조 이질접합부의 면외 휨/면내 전단하중 특성에 관한 실험연구)

  • Lee, Kyung-Jin;Hwang, Kyeong-Min;Hahm, Kyung-Won;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • This paper describes an experimental study on the mechanical characteristic and behavior of a structure that has a joint between the reinforced concrete (RC) member and steel plate concrete (SC) member. An out-of-plane flexural test on an L-type test specimen and in-plane shear test on an I-type test specimen were carried out by means of repeated cyclic loading until their failure. Based on the results, the former showed pull-out failure mode of anchored vertical bars while the latter exhibited flexural failure mode of the basement member. These results reveal that the maximum capacity of the specimens is 96% and 82%, respectively, compared with the theoretical value.

Nonlinear analysis of damaged RC beams strengthened with glass fiber reinforced polymer plate under symmetric loads

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat;Belkacem, Adim
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.113-122
    • /
    • 2018
  • This study presents a new beam-column model comprising material nonlinearity and joint flexibility to predict the nonlinear response of reinforced concrete structures. The nonlinear behavior of connections has an outstanding role on the nonlinear response of reinforced concrete structures. In presented research, the joint flexibility is considered applying a rotational spring at each end of the member. To derive the moment-rotation behavior of beam-column connections, the relative rotations produced by the relative slip of flexural reinforcement in the joint and the flexural cracking of the beam end are taken into consideration. Furthermore, the considered spread plasticity model, unlike the previous models that have been developed based on the linear moment distribution subjected to lateral loads includes both lateral and gravity load effects, simultaneously. To confirm the accuracy of the proposed methodology, a simply-supported test beam and three reinforced concrete frames are considered. Pushover and nonlinear dynamic analysis of three numerical examples are performed. In these examples the nonlinear behavior of connections and the material nonlinearity using the proposed methodology and also linear flexibility model with different number of elements for each member and fiber based distributed plasticity model with different number of integration points are simulated. Comparing the results of the proposed methodology with those of the aforementioned models describes that suggested model that only uses one element for each member can appropriately estimate the nonlinear behavior of reinforced concrete structures.

A Study on Flexural and Shear Behavior of the Structure with Steel Plate Concrete to Reinforced Concrete Member's Connection (철근 콘크리트와 강판 콘크리트 간 이질접합부로 구성된 구조물의 휨 및 전단거동 특성 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Lee, Jong Bo;Won, Deok Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.267-275
    • /
    • 2012
  • This paper describes the experimental study on the structural behavior of the joint plane between a RC(Reinforced Concrete) wall and a SC(Steel Plate Concrete) wall under out-of plane flexural loads and in-plane shear loads. The test specimens were produced with L and I shape to assess efficiently flexural and shear behavior of the structures. In order to consider dynamic loads such as earthquake, cyclic loading tests were carried out. As results of the out-of plane flexural tests, ductile failure mode of vertical bars was shown under a push load and the failure load was more than nominal strength of the specimen. And the latter test was performed to verify the variation which was composition presence of horizontal bars in the SC member. The test results showed that capacity of the specimens was more than their nominal strength regardless of composition presence of horizontal bars.

Flexural Rehabilitation Effect of Pre-loaded RC Beams Strengthened by Steel Plate (재하상태에 따른 강판보강공법의 휨 보강효과)

  • 한복규;홍건호;신영수;조하나
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.701-704
    • /
    • 1999
  • The purpose of this study was to investigate the effectiveness of the flexural rehabilitation of the pre-loaded reinforced concrete beams strengthened by the steel plate. Main test parameters were the existence and the magnitude of the pre-loading at the flexural of rehabilitation and the tensile reinforcement ratio of the specimens. Seven beam specimens were tested to investigate the effectiveness of the rehabilitation method. Test results showed that the ultimate load capacities of the pre-loaded specimens were higher than not-pre-loaded specimens at the rehabilitation. The cause of the pharameter was analyzed if is suggested that the bond failure between the concrete and the strengthening steel plate occured prior to the yielding of the tension reinforcement. The member flexural stiffnesses, were similar regardless of the load conditions at retrofit and failure modes showed brittle aspect caused by rip-off failure.

  • PDF

An experimental study on the effect of flexural strengthening with steel plate considering initial strain in reinforcement concrete beams (초기변형률을 고려한 철근콘크리트의 보의 강판휨보강 효과에 관한 실험적 연구)

  • Kim, Jong-Ok;Kim, Jin-Mu;Jang, Hwa-Kyun;Won, Young-Sul;Joo, Kyung-Jai
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.228-236
    • /
    • 2001
  • When RC beams are strengthened for flexure with steel plate, reinforced member has initial strain due to the dead load and is subject to partial damage. Strain of steel strengthening is zero at initial state. The effect of strengthening flexural member might be influenced by the quantity of initial strain. In this study, when He beams are strengthened for flexure with steel plate, its behavior is experimentally compared for the reinforcement efficiency of members due to the existence of different levels of initial strain. It is confirmed that reinforcement efficiency varies depending on the difference of initial strain.

  • PDF

A Study on the Design Formula about Strengthening in Flexure with Steel Plate in Reinforced Concrete Beams (철근콘크리트 보의 강판 휨보강 설계식에 관한 연구)

  • Kim, Jong-Ok;Jang, Hwa-Kyun;Won, Young-Sul;Joo, Kyung-Jai
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.121-128
    • /
    • 2000
  • When RC beams are strengthening in flexure with steel plate, they have initial strain due to dead load. Strain of steel used in strengthening member is zero. The effect of strengthening in flexure at member changes in accordance with the quantity of initial strain. But in most cases, Quantity of reinforcement is determined without regard to the difference of initial strain when there are calculated the strengthening in flexure at beams. Such method is possible to suggest inadequate quantity of reinforcement. Thus, the object of the study is to suggest practical design equation and reinforcement proposal using comparison and analysis reinforcement efficiency about fexural strength in case with regard and without regard to the initial strain when Re beams are strengthening in flexure with steel plate.

  • PDF

A Study on Verification Tests according to Connection Design Methods of Steel Plate Concrete Structures (강판 콘크리트 구조 접합부의 설계방식에 따른 검증실험 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Yang, Hyun Jung;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • In this study, out-of-plane flexural test was performed to analyze behavior properties for a beam specimen which imitated a structure with connection member between reinforced concrete and steel plate concrete part. Tie bars between a upper and a lower steel plate, and tie wide flange shapes between upper and lower ribs were designed to prevent the steel plate or the ribs from breakaway in the connection of the specimen. As a result of the test, ductile failure behavior of the specimen and the functionality of the tie members were conformed as originally intended. Also, tension tests were performed to evaluate the design appropriateness of two specimens produced to anchor and connect mechanically #14 bars. The two test results showed that the anchorage connection system behaves in elastic limit during the main bars yielded, and the integrity of the designed system was verified.

Rehabilitation of RC structural elements: Application for continuous beams bonded by composite plate under a prestressing force

  • Abderezak, Rabahi;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • v.11 no.2
    • /
    • pp.91-109
    • /
    • 2022
  • This paper presents a closed-form higher-order analysis of interfacial shear stresses in RC continuous beams strengthened with bonded prestressed laminates. For retrofitting reinforced concrete continuous beams is to bond fiber reinforced prestressed composite plates to their tensile faces. An important failure mode of such plated beams is the debonding of the composite plates from the concrete due to high level of stress concentration in the adhesive at the ends of the composite plate. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the RC continuous beams strengthened with bonded prestressed laminates. The theoretical predictions are compared with other existing solutions. A parametric study has been conducted to investigate the sensitivity of interface behavior to parameters such as laminate stiffness and the thickness of the laminate where all were found to have a marked effect on the magnitude of maximum shear and normal stress in the composite member.