Browse > Article
http://dx.doi.org/10.12989/amr.2022.11.2.091

Rehabilitation of RC structural elements: Application for continuous beams bonded by composite plate under a prestressing force  

Abderezak, Rabahi (Department of Civil Engineering, Laboratory of Geomatics and Sustainable Development, University of Tiaret)
Rabia, Benferhat (Department of Civil Engineering, Laboratory of Geomatics and Sustainable Development, University of Tiaret)
Daouadji, Tahar Hassaine (Department of Civil Engineering, Laboratory of Geomatics and Sustainable Development, University of Tiaret)
Publication Information
Advances in materials Research / v.11, no.2, 2022 , pp. 91-109 More about this Journal
Abstract
This paper presents a closed-form higher-order analysis of interfacial shear stresses in RC continuous beams strengthened with bonded prestressed laminates. For retrofitting reinforced concrete continuous beams is to bond fiber reinforced prestressed composite plates to their tensile faces. An important failure mode of such plated beams is the debonding of the composite plates from the concrete due to high level of stress concentration in the adhesive at the ends of the composite plate. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the RC continuous beams strengthened with bonded prestressed laminates. The theoretical predictions are compared with other existing solutions. A parametric study has been conducted to investigate the sensitivity of interface behavior to parameters such as laminate stiffness and the thickness of the laminate where all were found to have a marked effect on the magnitude of maximum shear and normal stress in the composite member.
Keywords
composite plate; continuous RC beam; interfacial stresses; shear lag effect; strengthening;
Citations & Related Records
Times Cited By KSCI : 40  (Citation Analysis)
연도 인용수 순위
1 Daouadji, T.H., Abderezak, R. and Benferhat, R. (2021d), "A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage", Struct. Eng. Mech., Int. J., 79(5), 531-540. http://doi.org/10.12989/sem.2021.79.5.531   DOI
2 Chen, H., Song, H., Li, Y. and Safarpour, M. (2020), "Hygro-thermal buckling analysis of polymer-CNT-fiber-laminated nano-composite disk under uniform lateral pressure with the aid of GDQM", Eng. Comput. https://doi.org/10.1007/s00366-020-01102-y   DOI
3 Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021b), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., Int. J., 3(1), 41-55. http://doi.org/10.12989/cme.2021.3.1.041   DOI
4 Tounsi, A., Daouadji, T.H. and Benyoucef, S. (2008), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", Int. J. Adhes. Adhes., 29, 313-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008   DOI
5 Abderezak, R., Tahar, H.D., Rabia, B. and Tounsi, A. (2021d), "New proposal for flexural strengthening of a continuous I-steel beam using FRP laminate under thermo-mechanical loading", Struct. Eng. Mech., Int. J., 78(6), 703-714. http://doi.org/10.12989/sem.2021.78.6.703   DOI
6 Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021c), "Analysis and sizing of RC beams reinforced by external bonding of imperfect functionally graded plate", Adv. Mater. Res., Int. J., 10(2), 77-98. http://doi.org/10.12989/amr.2021.10.2.077   DOI
7 Chedad, A., Daouadji, T.H., Abderezak, R., Belkacem, A., Abbes, B., Benferhat, R. and Abbes, F. (2018), "A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams", Adv. Mater. Res., Int. J., 6(4), 317-328. https://doi.org/10.12989/amr.2017.6.4.317   DOI
8 Abderezak, R., Daouadji, T.H. and Rabia, B. (2021a), "Modeling and analysis of the imperfect FGMdamaged RC hybrid beams", Adv. Computat. Des., Int. J., 6(2), 117-133. http://doi.org/10.12989/acd.2021.6.2.117   DOI
9 Aicha, K., Rabia, B., Daouadji, T.H. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Coupl. Syst. Mech., Int. J., 9(6), 575-597. http://doi.org/10.12989/csm.2020.9.6.575   DOI
10 Hirwani, C.K. and Panda, S.K. (2020), "Nonlinear transient analysis of delaminated curved composite structure under blast/pulse load", Eng. Comput., 36, 1201-1214. https://doi.org/10.1007/s00366-019-00757-6   DOI
11 Henni, M.A.B., Abbes, B., Daouadji, T.H., Abbes, F. and Adim, B. (2021), "Numerical modeling of hygrothermal effect on the dynamic behavior of hybrid composite plates", Steel Compos. Struct., Int. J., 39(6), 751-763. http://doi.org/10.12989/scs.2021.39.6.751   DOI
12 Benachour, A., Benyoucef, S. and Tounsi, A. (2008), "Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate", Eng. Struct., 30, 3305-3315. https://doi.org/10.1016/j.engstruct.2008.05.007   DOI
13 Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021a), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Compos. Mater. Eng., Int. J., 3(1), 25-40. http://doi.org/10.12989/cme.2021.3.1.025   DOI
14 Abderezak, R., Rabia, B., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2019), "Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams", Adv. Mater. Res., Int. J., 7(2), 83-103. https://doi.org/10.12989/amr.2018.7.2.083   DOI
15 Abderezak, R., Daouadji, T.H. and Rabia, B. (2021b), "Aluminum beam reinforced by externally bonded composite materials", Adv. Mater. Res., Int. J., 10(1), 23-44. http://doi.org/10.12989/amr.2021.10.1.023   DOI
16 Abderezak, R., Tahar, H.D., Rabia, B. and Tounsi, A. (2021c), "Mechanical behavior of RC cantilever beams strengthened with FRP laminate plate", Adv. Computat. Des., Int. J., 6(3), 169-190. http://doi.org/10.12989/acd.2021.6.3.169   DOI
17 Abderezak, R., Daouadji, T.H. and Rabia, B. (2021e), "Fiber reinforced polymer in civil engineering: Shear lag effect on damaged RC cantilever beams bonded by prestressed plate", Coupl. Syst. Mech., Int. J., 10(4), 299-316. http://doi.org/10.12989/csm.2021.10.4.299   DOI
18 Abderezak, R., Daouadji, T.H. and Rabia, B. (2021f), "New solution for damaged porous RC cantilever beamsstrengthening by composite plate", Adv. Mater. Res., Int. J., 10(3), 169-194. http://doi.org/10.12989/amr.2021.10.3.169   DOI
19 Anil, K.L., Panda, S.K., Sharma, N., Hirwani, C.K. and Topal, U. (2020), "Optimal fiber volume fraction prediction of layered composite using frequency constraints- A hybrid FEM approach", Comput. Concrete, Int. J., 25(4), 303-310. http://doi.org/10.12989/cac.2020.25.4.303   DOI
20 Guenaneche, B. and Tounsi, A. (2014), "Effect of shear deformation on interfacial stress analysis in plated beams under arbitrary loading", Adhes. Adhes., 48, 1-13. https://doi.org/10.1016/j.ijadhadh.2013.09.016   DOI
21 Kalita, K., Dey, P., Haldar, S. and Gao, X.Z. (2020), "Optimizing frequencies of skew composite laminates with metaheuristic algorithms", Eng. Comput., 36, 741-761. https://doi.org/10.1007/s00366-019-00728-x   DOI
22 Zeverdejani, M.K. and Beni, Y.T. (2020), "Effect of laminate configuration on the free vibration/buckling of FG Graphene composites", Adv. Nano Res., Int. J., 8(2), 103-114. http://doi.org/10.12989/anr.2020.8.2.103   DOI
23 Larrinaga, P., Garmendia, L., Pinero, I. and San-Jose, J.T. (2020), "Flexural strengthening of low-grade reinforced concrete beams with compatible composite material: Steel Reinforced Grout (SRG)", Constr. Build. Mater., 235, 117790. https://doi.org/10.1016/j.conbuildmat.2019.117790   DOI
24 Panjehpour, M., Ali, A.A.A., Voo, Y.L. and Aznieta, F.N. (2014), "Effective compressive strength of strut in CFRP-strengthened reinforced concrete deep beams following ACI 318-11", Comput. Concrete, Int. J., 13(1), 135-165. https://doi.org/10.12989/cac.2014.13.1.135   DOI
25 Tayeb, B., Daouadji, T.H., Abderezak, R. and Tounsi, A. (2021), "Structural bonding for civil engineering structures: New model of composite I-steel-concrete beam strengthened with CFRP plate", Steel Compos. Struct., Int. J., 41(3), 417-435. https://doi.org/10.12989/scs.2021.41.3.417   DOI
26 Tounsi, A. (2006), "Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate", Int. J. Solids Struct., 43(14-15), 4154-4174. https://doi.org/10.1016/j.ijsolstr.2005.03.074   DOI
27 Wang, H., Yan, W. and Li, C. (2020a), "Response of angle-ply laminated cylindrical shells with surfacebonded piezoelectric layers", Struct. Eng. Mech., Int. J., 76(5), 599-611. http://doi.org/10.12989/sem.2020.76.5.599   DOI
28 Zohra, A., Benferhat, R., Tahar, H.D. and Tounsi, A. (2021), "Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations", Struct. Eng. Mech., Int. J., 77(6), 797-807. http://doi.org/10.12989/sem.2021.77.6.797   DOI
29 He, X.J., Zhou, C.Y. and Wang, Y. (2019), "Interfacial stresses in reinforced concrete cantilever members strengthened with fibre-reinforced polymer laminates", Adv. Struct. Eng., 23(2), 277-288. https://doi.org/10.1177/1369433219868933   DOI
30 Shahmohammadi, M.A., Azhari, M. and Saadatpour, M.M. (2020), "Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method", Steel Compos. Struct., Int. J., 34(3), 361-376. https://doi.org/10.12989/scs.2020.34.3.361   DOI
31 Benferhat, R., Daouadji, T.H. and Abderezak, R. (2020b), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., Int. J., 9(4), 265-287. http://doi.org/10.12989/amr.2020.9.4.265   DOI
32 Daouadji, T.H., Abderezak, R. and Benferhat, R. (2021e), "Hyperstatic steel structure strengthened with prestressed carbon/glass hybrid laminated plate", Coupl. Syst. Mech., Int. J., 10(5), 393-414. https://doi.org/10.12989/csm.2021.10.5.393   DOI
33 Gomes, G.F., de Almeida, F.A., Ancelotti, A.C. and da Cunha, S.S. (2021), "Inverse structural damage identification problem in CFRP laminated plates using SFO algorithm based on strain fields", Eng. Comput., 37, 3771-3791. https://doi.org/10.1007/s00366-020-01027-6   DOI
34 Hadj, B., Benferhat, R. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Coupl. Syst. Mech., Int. J., 10(1), 61-77. http://doi.org/10.12989/csm.2021.10.1.061   DOI
35 Antar, K., Amara, K., Benyoucef, S., Bouazza, M. and Ellali, M. (2019), "Hygrothermal effects on the behavior of reinforced-concrete beams strengthened by bonded composite laminate plates", Struct. Eng. Mech., Int. J., 69(3), 327-334. https://doi.org/10.12989/sem.2019.69.3.327   DOI
36 Benferhat, R., Daouadji, T.H. and Abderezak, R. (2020a), "Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Coupl. Syst. Mech., Int. J., 9(6), 499-519. http://doi.org/10.12989/csm.2020.9.6.499   DOI
37 Panjehpour, M., Farzadnia, N., Demirboga, R. and Ali, A.A.A. (2016), "Behavior of high-strength concrete cylinders repaired with CFRP sheets", J. Civil Eng. Manag., 22(1), 56-64. https://doi.org/10.3846/13923730.2014.897965   DOI
38 Rabahi, A., Daouadji, T.H., Abbes, B. and Adim, B. (2016), "Analytical and numerical solution of the interfacial stress in reinforced-concrete beams reinforced with bonded prestressed composite plate", J. Reinf. Plast. Compos., 35(3), 258-272. https://doi.org/10.1177/0731684415613633   DOI
39 Tanzadeh, H. and Amoushahi, H. (2020), "Analysis of laminated composite plates based on different shear deformation plate theories", Struct. Eng. Mech., Int. J., 75(2), 247-269. http://doi.org/10.12989/sem.2020.75.2.247   DOI
40 Tlidji, Y., Benferhat, R. and Daouadji, T.H. (2021a), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., Int. J., 77(2), 217-229. http://doi.org/10.12989/sem.2021.77.2.217   DOI
41 Tlidji, Y., Benferhat, R., Trinh, L.C., Daouadji, T.H. and Tounsi, A. (2021b), "New state-space approach to dynamic analysis of porous FG beam under different boundary conditions", Adv. Nano Res., Int. J., 11(4), 347-359. https://doi.org/10.12989/.2021.11.4.347   DOI
42 Wang, L., Yang, J. and Li, Y.H. (2021), "Nonlinear vibration of a deploying laminated Rayleigh beam with a spinning motion in hygrothermal environment", Eng. Comput., 37, 3825-3841. https://doi.org/10.1007/s00366-020-01035-6   DOI
43 Wang, Y.H., Yu, J., Liu, J.P., Zhou, B.X. and Chen, Y.F. (2020b), "Experimental study on assembled monolithic steel-prestressed concrete composite beam in negative moment", J. Constr. Steel Res., 167, 105667. https://doi.org/10.1016/j.jcsr.2019.06.004   DOI
44 Daouadji, T.H., Abderezak, R., Benferhat, R. and Tounsi, A. (2021c), "Impact of thermal effects in FRP-RC hybrid cantilever beams", Struct. Eng. Mech., Int. J., 78(5), 573-583. http://doi.org/10.12989/sem.2021.78.5.573   DOI
45 Daouadji, T.H., Abderezak, R., Benferhat, R. and Tounsi, A. (2021b), "Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses", Coupl. Syst. Mech., Int. J., 10(2), 161-184. http://doi.org/10.12989/csm.2021.10.2.161   DOI
46 Civalek, O. and Avcar, M. (2020b), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput. https://doi.org/10.1007/s00366-020-01168-8   DOI
47 Daraei, B., Shojaee, S. and Hamzehei-Javaran, S. (2020), "Free vibration analysis of axially moving laminated beams with axial tension based on 1D refined theories using Carrera unified formulation", Steel Compos. Struct., Int. J., 37(1), 37-49. https://doi.org/10.12989/scs.2020.37.1.037   DOI
48 Daouadji, T.H., Boussad, A., Abderezak, R., Benferhat, R., Fazilay, A. and Belkacem, A. (2019), "Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study", Struct. Eng. Mech., Int. J., 72(4), 409-419. https://doi.org/10.12989/sem.2019.72.4.409   DOI
49 Daouadji, T.H., Abderezak, R. and Benferhat, R. (2020), "Flexural performance of wooden beams strengthened by composite plate", Struct. Monitor. Maint., Int. J., 7(3), 233-259. http://doi.org/10.12989/smm.2020.7.3.233   DOI
50 Yuan, C., Chen, W., Pham, T.M. and Hao, H. (2019), "Effect of aggregate size on bond behaviour between basalt fibre reinforced polymer sheets and concrete", Compos. Part B: Eng., 158, 459-474. https://doi.org/10.1016/j.compositesb.2018.09.089   DOI
51 Mercan, K., Ebrahimi, F. and Civale, O. (2020), "Vibration of angle-ply laminated composite circular and annular plates", Steel Compos. Struct., Int. J., 34(1), 141-154. http://doi.org/10.12989/scs.2020.34.1.141   DOI
52 Bensattalah, T., Hassaine Daouadji, T. and Zidour, M. (2020), "Influences the Shape of the Floor on the Behavior of Buildings Under Seismic Effect", Proceedings of the 4th International Symposium on Materials and Sustainable Development, pp. 26-42. https://doi.org/10.1007/978-3-030-43268-3_3   DOI
53 Henriques, D., Goncalves, R., Sousa, C. and Camotim, D. (2020), "GBT-based time-dependent analysis of steel-concrete composite beams including shear lag and concrete cracking effects", Thin-Wall. Struct., 150, 106706. https://doi.org/10.1016/j.tws.2020.106706   DOI
54 Keshav, V. and Patel, S.N. (2020), "Non-Linear dynamic pulse buckling of laminated composite curved panels", Struct. Eng. Mech., Int. J., 73(2), 181-190. http://doi.org/10.12989/sem.2020.73.2.181   DOI
55 Krour, B., Bernard, F. and Tounsi, A. (2014), "Fibers orientation optimization for concrete beam strengthened with a CFRP bonded plate: A coupled analytical-numerical investigation", Eng. Struct., 56, 218-227. https://doi.org/10.1016/j.engstruct.2013.05.008   DOI
56 Liu, S., Zhou, Y., Zheng, Q., Zhou, J., Jin, F. and Fan, H. (2019), "Blast responses of concrete beams reinforced with steel-GFRP composite bars", Structures, 22, 200-212. https://doi.org/10.1016/j.istruc.2019.08.010   DOI
57 Abderezak, R., Daouadji, T.H. and Rabia, B. (2020), "Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate", Coupl. Syst. Mech., Int. J., 9(5), 473-498. http://doi.org/10.12989/csm.2020.9.5.473   DOI
58 Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Computat. Des., Int. J., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057   DOI
59 Cheng, X., Zhang, J., Cheng, Y., Guo, X. and Huang, W. (2020), "Effect of curing condition on mechanical properties of scarf-repaired composite laminates", Steel Compos. Struct., Int. J., 37(4), 419-429. https://doi.org/10.12989/scs.2020.37.4.419   DOI
60 Civalek, O. and Avcar, M. (2020a), "Free vibration and buckling analyses of CNT reinforced laminated nonrectangular plates by discrete singular convolution method", Eng. Comput. https://doi.org/10.1007/s00366-020-01168-8   DOI
61 Daouadji, T.H., Tayeb, B., Abderezak, R. and Tounsi, A. (2021a), "New approach of composite wooden beam-reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling", Struct. Eng. Mech., Int. J., 78(3), 319-332. http://doi.org/10.12989/sem.2021.78.3.319   DOI
62 Smith, S.T. and Teng, J.G. (2002), "Interfacial stresses in plated beams", Eng. Struct., 23(7), 857-871. http://doi.org/10.1016/S0141-0296(00)00090-0   DOI