• Title/Summary/Keyword: regulatory mechanism

Search Result 622, Processing Time 0.029 seconds

Inferring candidate regulatory networks in human breast cancer cells

  • Jung, Ju-Hyun;Lee, Do-Heon
    • Bioinformatics and Biosystems
    • /
    • v.2 no.1
    • /
    • pp.24-27
    • /
    • 2007
  • Human cell regulatory mechanism is one of suspicious problems among biologists. Here we tried to uncover the human breast cancer cell regulatory mechanism from gene expression data (Marc J. Van de vijver, et. al., 2002) using a module network algorithm which is suggested by Segal, et. al.(2003) Finally, we derived a module network which consists of 50 modules and 10 tree depths. Moreover, to validate this candidate network, we applied a GO enrichment test and known transcription factor-target relationships from Transfac(R) (V. Matys, et. al, 2006) and HPRD database (Peri, S. et al., 2003).

  • PDF

The Influence of the Suitability of the Chronic Regulatory Focus and the Advertising Message Type on the Evaluation of the Beauty Product (성향조절초점과 광고메시지유형의 적합성이 미용제품평가에 미치는 영향)

  • Ko, Sung-Hyun;Hwang, Sun-Jin
    • Journal of Fashion Business
    • /
    • v.15 no.2
    • /
    • pp.1-11
    • /
    • 2011
  • The purpose of this study is to investigate the influence of the suitability of the chronic regulatory focus and the advertising message type on the evaluation of the beauty product. In addition, feeling right while and individual is reading an advertisement is measured to check the mechanism making the regulatory fit effect. The experimental design was designed with the mixed design of 2(chronic regulatory focus: promotion / prevention, between group) ${\times}$ 2(advertising message type: promotion /prevention, within a group). 100 female university student subjects in their twenties in Seoul and in the metropolitan area were asked to respond to questionnaires in the study. The reliability analysis, T-test, analysis of variance(ANOVA), and analysis of covariance (ANCOVA) on the collected data were done with SPSS WIN 12.0. The results of the study are as follows. First, the regulatory fit effect that when the individual chronic regulatory fit corresponds to the advertising message focus each other in the advertising of a new beauty product, the evaluation on the product is more positive could be checked. The promotion focus message of shampoo, the promotion focus group showed more positive response than the prevention focus group and as for the prevention focus message, the prevention focus group showed more positive results than the promotion focus group so that the effect of regulatory fit appeared. Second, when the regulatory fit effect appeared in the evaluation on the new beauty product, the fit effect on the individual chronic regulatory focus and on the advertising message focus also appeared in the measurement of feeling right. Hence, feeling right could be checked by using the mechanism of the regulatory fit effect.

Regulatory Mechanism of Lysine Biosynthetic Genes in Escherichia coli

  • Joe, Min-Ho;Mun, Hyo-Young;Hong, Mi-Ju;Kim, Seong-Jun;Park, Young-Hoon;Rhee, Sang-Ki;Kwon, Oh-Suk
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2004.06a
    • /
    • pp.236-241
    • /
    • 2004
  • In Escherichia coli, L-lysine biosynthetic pathway is composed of nine enzymatic reactions. It has been well established that most of the lysine biosynthetic genes are regulated by the lysine availability, even though they are all scattered around the chromosome without forming any multigenic operon structure. However, no transcriptional regulatory mechanism has been identified except for the activation of lysA gene by the LysR. In this study, changes in transcriptome profiles of wild type cells and lysR deletion mutant cells grown in the absence or presence of lysine were investigated by using DNA microarray technique. Microarray data analysis revealed three groups of genes whose expression varies depending on the availability of lysine or LysR or both. To further examine the regulatory patterns of lysine biosynthetic genes, lacZ operon fusions were constructed and their expression was measured under various conditions. Obtained results strongly suggest that there is an additional regulatory mechanism which senses the lysine availability and coordinates gene expression.

  • PDF

Dynamic Behavior of Regulatory Elements in the Hierarchical Regulatory Network of Various Carbon Sources-Grown Escherichia coli

  • Lee, Sung-Gun;Hwang, Kyu-Suk;Kim, Cheol-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.551-559
    • /
    • 2005
  • The recent rapid increase in genomic data related to many microorganisms and the development of computational tools to accurately analyze large amounts of data have enabled us to design several kinds of simulation approaches for the complex behaviors of cells. Among these approaches, dFBA (dynamic flux balance analysis), which utilizes FBA, differential equations, and regulatory events, has correctly predicted cellular behaviors under given environmental conditions. However, until now, dFBA has centered on substrate concentration, cell growth, and gene on/off, but a detailed hierarchical structure of a regulatory network has not been taken into account. The use of Boolean rules for regulatory events in dFBA has limited the representation of interactions between specific regulatory proteins and genes and the whole transcriptional regulation mechanism with environmental change. In this paper, we adopted the operon as the basic structure, constructed a hierarchical structure for a regulatory network with defined fundamental symbols, and introduced a weight between symbols in order to solve the above problems. Finally, the total control mechanism of regulatory elements (operons, genes, effectors, etc.) with time was simulated through the linkage of dFBA with regulatory network modeling. The lac operon, trp operon, and tna operon in the central metabolic network of E. coli were chosen as the basic models for control patterns. The suggested modeling method in this study can be adopted as a basic framework to describe other transcriptional regulations, and provide biologists and engineers with useful information on transcriptional regulation mechanisms under extracellular environmental change.

Regulatory T Cells and Infectious Disease

  • Rouse, Barry T.;Sehrawat, Sharvan
    • IMMUNE NETWORK
    • /
    • v.7 no.4
    • /
    • pp.167-172
    • /
    • 2007
  • Various cell types that express regulatory function may influence the pathogenesis of most and perhaps all infections. Some regulatory cells are present at the time of infection whereas others are induced or activated in response to infection. The actual mechanisms by which different types of infections signal regulatory cell responses remain poorly understood. However a most likely mechanism is the creation of a microenvironment that permits the conversion of conventional T cells into cells with the same antigen specificity that have regulatory function. Some possible means by which this can occur are discussed. The relationship between regulatory cells and infections is complex especially with chronic situations. The outcome can either be of benefit to the host or damage the disease control process or in rare instances appears to be a component of a finely balanced relationship between the host and the infecting agent. Manipulating the regulatory cell responses to achieve a favorable outcome of infection remains an unfulfilled objective of therapeutic immunology.

A Theoretical Modeling for Suggesting Unique Mechanism of Adolescent Calcium Metabolism

  • Lee, Wang-Hee;Cho, Byoung-Kwan;Okos, Martin R.
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.129-137
    • /
    • 2013
  • Purpose: Modeling has been used for elucidating the mechanism of complex biosystems. In spite of importance and uniqueness of adolescent calcium (Ca) metabolism characterized by a threshold Ca intake, its regulatory mechanism has not been covered and even not proposed. Hence, this study aims at model-based proposing potential mechanisms regulating adolescent Ca metabolism. Methods: Two different hypothetic mechanisms were proposed. The main mechanism is conceived based on Ca-protein binding which induces renal Ca filtration, while additional mechanism assumed that active renal Ca re-absorption regulated Ca metabolism in adolescents. Mathematical models were developed to represent the proposed mechanism and simulated them whether they could produce adolescent Ca profiles in serum and urine. Results: Simulation showed that both mechanisms resulted in the unique behavior of Ca metabolism in adolescents. Based on the simulation insulin-like growth factor-1 (IGF-1) is suggested as a potential regulator because it is related to both growth, a remarkable characteristic of adolescence, and Ca metabolism including absorption and bone accretion. Then, descriptive modeling is employed to conceptualize the hypothesized mechanisms governing adolescent Ca metabolism. Conclusions: This study demonstrated that modeling is a powerful tool for elucidating an unknown mechanism by simulating potential regulatory mechanisms in adolescent Ca metabolism. It is expected that various analytic applications would be plausible in the study of biosystems, particularly with combination of experimental and modeling approaches.

Beyond Viral Interferon Regulatory Factors: Immune Evasion Strategies

  • Myoung, Jinjong;Lee, Shin-Ae;Lee, Hye-Ra
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1873-1881
    • /
    • 2019
  • The innate immune response serves as a first-line-of-defense mechanism for a host against viral infection. Viruses must therefore subvert this anti-viral response in order to establish an efficient life cycle. In line with this fact, Kaposi's sarcoma-associated herpesvirus (KSHV) encodes numerous genes that function as immunomodulatory proteins to antagonize the host immune system. One such mechanism through which KSHV evades the host immunity is by encoding a viral homolog of cellular interferon (IFN) regulatory factors (IRFs), known as vIRFs. Herein, we summarize recent advances in the study of the immunomodulatory strategies of KSHV vIRFs and their effects on KSHV-associated pathogenesis.

The history and regulatory mechanism of the Hippo pathway

  • Kim, Wantae;Jho, Eek-hoon
    • BMB Reports
    • /
    • v.51 no.3
    • /
    • pp.106-118
    • /
    • 2018
  • How the organ size is adjusted to the proper size during development and how organs know that they reach the original size during regeneration remain long-standing questions. Based on studies using multiple model organisms and approaches for over 20 years, a consensus has been established that the Hippo pathway plays crucial roles in controlling organ size and maintaining tissue homeostasis. Given the significance of these processes, the dysregulation of the Hippo pathway has also implicated various diseases, such as tissue degeneration and cancer. By regulating the downstream transcriptional coactivators YAP and TAZ, the Hippo pathway coordinates cell proliferation and apoptosis in response to a variety of signals including cell contact inhibition, polarity, mechanical sensation and soluble factors. Since the core components and their functions of the Hippo pathway are evolutionarily conserved, this pathway serves as a global regulator of organ size control. Therefore, further investigation of the regulatory mechanisms will provide physiological insights to better understand tissue homeostasis. In this review, the historical developments and current understandings of the regulatory mechanism of Hippo signaling pathway are discussed.

Dynamic Behavioral Prediction of Escherichia coli Using a Visual Programming Environment (비쥬얼 프로그래밍 환경을 이용한 Escherichia coli의 동적 거동 예측)

  • Lee, Sung-Gun;Hwang, Kyu-Suk;Kim, Cheol-Min
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.39-49
    • /
    • 2004
  • When there is a lack of detailed kinetic information, dFBA(dynamic flux balance analysis) has correctly predicted cellular behavior under given environmental conditions with FBA and different ial equations. However, until now, dFBA has centered on substrate concentration, cell growth, and gene on/off, but a detailed hierarchical structure of a regulatory network has not been taken into account. For this reason, the dFBA has limited the represen tation of interactions between specific regulatory proteins and genes and the whole transcriptional regulation mechanism with environmental change. Moreover, to calculate optimal metabolic flux distribution which maximizes the growth flux and predict the b ehavior of cell system, linear programming package(LINDO) and spreadsheet package(EXCEL) have been used simultaneously. thses two software package have limited in the visual representation of simulation results and it can be difficult for a user to look at the effects of changing inputs to the models. Here, we descirbes the construction of hierarchical regulatory network with defined symbolsand the development of an integrated system that can predict the total control mechanism of regulatory elements (opero ns, genes, effectors, etc.), substrate concentration, growth rate, and optimal flux distribution with time. All programming procedures were accoplished in a visual programming environment (LabVIEW).

  • PDF

A practical challenge-response authentication mechanism for a Programmable Logic Controller control system with one-time password in nuclear power plants

  • Son, JunYoung;Noh, Sangkyun;Choi, JongGyun;Yoon, Hyunsoo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1791-1798
    • /
    • 2019
  • Instrumentation and Control (I&C) systems of nuclear power plants (NPPs) have been continuously digitalized. These systems have a critical role in the operation of nuclear facilities by functioning as the brain of NPPs. In recent years, as cyber security threats to NPP systems have increased, regulatory and policy-related organizations around the world, including the International Atomic Energy Agency (IAEA), Nuclear Regulatory Commission (NRC) and Korea Institute of Nuclear Nonproliferation and Control (KINAC), have emphasized the importance of nuclear cyber security by publishing cyber security guidelines and recommending cyber security requirements for NPP facilities. As described in NRC Regulatory Guide (Reg) 5.71 and KINAC RS015, challenge response authentication should be applied to the critical digital I&C system of NPPs to satisfy the cyber security requirements. There have been no cases in which the most robust response authentication technology like challenge response has been developed and applied to nuclear I&C systems. This paper presents a challenge response authentication mechanism for a Programmable Logic Controller (PLC) system used as a control system in the safety system of the Advanced Power Reactor (APR) 1400 NPP.