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Abstract The recent rapid increase in genomic data related
to many microorganisms and the development of computational
tools to accurately analyze large amounts of data have enabled
us to design several kinds of simulation approaches for the
complex behaviors of cells. Among these approaches, dFBA
(dynamic flux balance analysis), which utilizes FBA, differential
equations, and regulatory events, has correctly predicted cellular
behaviors under given environmental conditions. However,
until now, dFBA has centered on substrate concentration, cell
growth, and gene on/off, but a detailed hierarchical structure
of a regulatory network has not been taken into account. The
use of Boolean rules for regulatory events in dFBA has
limited the representation of interactions between specific
regulatory proteins and genes and the whole transcriptional
regulation mechanism with environmental change. In this paper,
we adopted the operon as the basic structure, constructed a
hierarchical structure for a regulatory network with defined
fundamental symbols, and introduced a weight between symbols
in order to solve the above problems. Finally, the total control
mechanism of regulatory elements (operons, genes, effectors,
etc.) with time was simulated through the linkage of dFBA
with regulatory network modeling. The lac operon, frp
operon, and tna operon in the central metabolic network of £.
coli were chosen as the basic models for control patterns. The
suggested modeling method in this study can be adopted as a
basic framework to describe other transcriptional regulations,
and provide biologists and engineers with useful information
on transcriptional regulation mechanisms under extracellular
environmental change. '
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Recent outcomes from genome research on principal
microorganisms have provided systematic and intensive
information at the genome level {20]. High-throughput
computational analysis of this information, especially fully
sequenced microbial genomes, has led to the construction
of the whole biochemical pathways for cells. Logically, the
next step is to study the actual biological functions of
genes in microbial genomes, and eventually to construct
in silico models for the simulation of cellular functions
through biochemical pathways on computer.

Firstly, it has been observed both experimentally and
computationally that genes in microbial genomes tend
to form modular functional units that are conserved and
coordinately regulated during evolution [6, 22, 27]. A cluster
of these genes is called an operon [8]. Operon structures
are known to be an important family among these conserved
functionally related genomic units. Moreover, these units
often appear in multiple genomes and perform highly
compartmentalized activities in biochemical pathways [35].
Experimental detection and confirmation of these operons
is time-consuming and relatively difficult to perform in the
laboratory due to a high-throughput process. To overcome
this problem, several computational methods for modeling
and predicting operons in E. coli as a model organism [34]
have been suggested. Now, regulons, operons, regulatory
proteins, structural genes, effectors, and metabolic pathways
related to E. coli can easily be researched through RegulonDB
[11] and EcoCyc [12] on the Web.

Secondly, the regulatory and metabolic models that are
based on constructed biological pathways have had beneficial
effects on several fields. Microarrays have been developed
to analyze gene expression patterns; they are necessary to
predict intracelluar transcription and transcriptional regulation
under given environmental conditions [2]. These models
have also been very useful in metabolic engineering. This
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is the reason why metabolic engineers can produce the
desired biochemical species [9, 10, 16,17, 31], by using
the models. This usefulness induces many research groups
to suggest several approaches to analyze metabolic and
regulatory models with simulation. The approaches, using
a qualitative model, deal well with the lack of information
to describe cellular metabolism or quantitative data in
molecular biology. However, they often generate incorrect
results and behaviors due to combinatorial explosion [19,
21, 28]. Another type of model uses the kinetic theory
for studying catabolite repression and diauxic growth on
glucose and lactose in E. coli [15,33]. This method
also has a disadvantage that requires detailed kinetic and
concentration data on enzymes.

When there is a lack of detailed kinetic information,
FBA (flux balance analysis) can accurately analyze metabolic
capabilities, cell growth rate, metabolic byproducts, substrate
concentrations, and important reactions related to achieving
a desired production [29]. Information required for the
analysis is stoichiometry of metabolic pathways, metabolic
requirements, and fundamental physicochemical constraints.
This information is well known and easily obtainable. FBA
can also be used for the dynamic prediction of cell growth,
metabolic byproduct secretion, and substrate concentrations
[30, 31].

Recently, researchers have attempted to incorporate

regulatory constraints in dFBA, as previous studies did
not consider them, despite that the constraints have a
significant effect on the behavior of an organism. dFBA
is divided into two formulations: dynamic optimization
approach (DOA) and static optimization approach (SOA)
[20]. The dFBA method proposed by Varma and Palsson
[30] belongs to SOA without rate-of-change constraints
on the metabolic fluxes. In this paper, this approach
was adopted. The regulatory constraints in dFBA can be
represented with the logic method [2]. Therefore, dFBA
with the logic method has been used to quantitatively
predict diauxic growth in E. coli.

(a) inactive inactive

The logic method uses the equations represented by
the production rule (If-Then rules) and Boolean logic. This
Boolean rule-based system has the advantage to describe
well the causal relation between two events and to convert
states in any condition to rules. However, Boolean rule has
some problems, such as difficulty to represent interactions
with specific regulatory proteins and genes, since it is a
binary (true, false) system [4]. It also has the disadvantage
of not knowing the total operon and gene control mechanism
due to its difficulty to track the application of rules [32].

In this paper, in order to solve these disadvantages, we
introduced (I) a weight for a degree of connectivity between
regulatory elements (regulatory protein, gene, effector, etc.)
in the digraph and (II) a hierarchical structure for a regulatory
network that is composed of modeled operons with Boolean
symbols as a basic structure, and (III) simulated the total
control mechanism of regulatory elements with time through
the linkage of a constructed regulatory network and dFBA.
These dynamic transcriptional regulation simulations can
provide biologists and engineers with useful information
on the control mechanisms of regulatory elements to
extracellular environmental change.

MATERIALS AND METHODS

Modeling and Construction of Two Modules

Graph theory and Boolean symbols were introduced to
simulate the transcriptional regulation mechanism with
environmental change. The hierarchical structure for the
regulatory network was built by operon units. Each
operon organized in the form of a hierarchical structure is
modeled with defined fundamental modeling symbols, and
RMM (regulatory modeling module) was built. Dynamic
transcriptional regulation was performed through the linkage
of RMM and dFBAM (dynamic flux balance analysis
module). The lac operon, trp operon, and tna operon were
chosen as basic examples for modeling illustration.
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Fundamental Modeling Symbols

Operons in RMM consisted of symbols and weights.
Modeling symbols were divided into biological symbols
for regulation and non-biological symbols for weight.
Promoter, not gate, and operator formed a cluster that acted
as gene transcription. Arc represented the existence of
causal relationship among symbols and was used for
propagation of weight. Weight was used to determine the
active/inactive state of a symbol and can also indicate
a degree of connectivity between symbols. It can be
effectively used in conditions that are not represented with
a binary system.

InFig. 1(c), a binary system can not deal with a situation
where true and false events occur at the same time.
However, by adding a degree of connectivity to weight, the
problem can be solved. In fact, the situation was generated
at the relation Fnr—cydAB and ArcA—>cydAB under
anaerobic conditions. Fnr acted as a repressor and ArcA as
an activator to cydAB [5, 11, 26].

Basic Operon Modeling

Operons were modeled, using fundamental symbols (Table 1).
Modeled operons were composed of five symbols: P
(promoter), RP (regulatory protein), O (operator), SG
(structural genes), SW (switch, on/off), and have a positive
control mode and a negative control mode by pattern
governed genes. The “not gate” in an operon became
active under a negative control mode.

Table 1. Fundamental modeling symbols.

Function Symbol

Operator

—(O)—

—{r [}

Structural gene

Promoter (RNA polymerase)

Regulatory protein
(or transcription factor)

Effector (inducer, repressor)
Gene transcription

negative control
positive control

Weight distributor
And gate —»D——»
Not gate "*{>O""

Switch for operon

Node state active/inactive

Regulatory )
Protein Weight

Distributer

Positive

NS Promoter Stguctuba
) ) Fene

€ -

1%

Ogperator

Not Gate

Hegative

Fig. 2. Operon structure and modeling with biological and non-
biological symbols.

The state value of a node was 1 or 0, which was
determined by the propagation of weight and the Boolean
symbols for weight, through an arc. If weight was over
1 or below 0, it was regarded as 1 or 0 at the step to
determine symbol state. In Fig. 2, O can not have a direct
influence on SG, but P can have an influence on the state of
SG. Eventually, if SG becomes active, front symbols have
to orderly be active for active SG. From this point of view,
an operon modeled with symbols has a control mechanism
and shows the entire regulation procedure of gene
expression.

The lac operon modeling had a positive control mode
(Fig. 3A) and a negative control mode (Fig. 3B1) [1]. In a
negative control mode, not gate existed between S2 and
RP2, since lactose in S2 obstructed the function of Lacl,
therefore, not gate between O2 and P2 became active. In a
positive control mode, not gate existed between S1 and E1,
since glucose in S1 made the concentration level of cAMP
low, therefore, not gate between O2 and P2 became inactive.

The #rp and tna operons, related to the synthesis and
degradation of amino acids, are very different from the lac
operon, thus allowing cells to use particular carbon sources.

- A gene transcription in #rp operon modeling (Fig. 3C)
corresponded to a negative control mode, and not gate
between O3 and P3 became active. However, not gate
between S4 and RP4 did not exist, since tryptophan acted
as a co-repressor.

A gene transcription in ma operon modeling (Fig. 3B2)
corresponded to a positive control mode. So, not gate
between O2 and P2 became active, but not gate between
S3 and RP3 did not exist, since tryptophan as a stimulus
made fna regulatory protein active [7, 14]. The tna operon
turned on when tryptophan was used as an alternate carbon
energy source and was opposite to the #p operon in
function [13].

Construction of RMM

Hierarchical Structure Construction Within a Global
Regulatory Network. A global regulatory network as a
part of RMM organized by modeled operons can intuitively
show how a set of genes are regulated (Fig. 3). This network



554 LeEetal

— e assamaaescary reaatanaty

Stinurhas
Ghicose + Latose

Stitnulus Level iB 351

Tvindulon
Level

.................................

............. Global control

- w = = Local control

[
.
i
F]

Fig. 3. Hierarchical structure of the global regulatory network.

A: Negative lac operon. B1: Positive lac operon. C: trp operon. B2 and D: tma operon.

can be hierarchically divided into stimulus, modulon,
regulon/operon, gene level, and metabolic pathway level.
The stimulus level is a simple environmental change. The
modulon level responds to extracellular environmental
change and coordinately regulates regulons/operons with
global regulatory protein. The regulon/operon level directly
governs a set of operons or a set of genes [25]. The gene
level indicates active/inactive of genes regulated by an
operon. These genes stimulate reactions in the metabolic
pathway level, which synthesizes or decays metabolites for
cellular growth.

Construction of dJFBAM

Central Metabolic Pathway of E. coli. In this research,
the previously studied core metabolic network of E. coli
[19] was taken and expanded. We found 21 regulatory
proteins controlling genes that are related to the central
metabolic pathway, 19 operons containing structural genes
that were comprised of more than two genes, 87 genes
(71.9%, 87/121) regulated by regulatory protein, and

66 genes (75.9%, 66/87) controlled by more than two
regulatory proteins among genes that are governed by
regulatory proteins in the central metabolic pathway.

Dynamic Flux Balance Analysis

Using FBA and iterative algorithm [30,31], dFBA can
quantitatively predict cell density and metabolic byproduct.
In this study, dFBA was a static optimization-based analysis
that did not contain rate-of-constraints [20].

To quantitatively predict cellular behavior, the batch
time was first divided into small time intervals (At). Given
initial values, FBA was utilized to estimate actual substrate
uptake, growth rate, and byproduct [14,26,27]. With
these data from FBA, concentrations for the next time step
were repeatedly calculated from a standard differential
equation (Appendix) through an iterative algorithm. Lastly, by
integrating small time intervals, the variation of concentration
over all the intervals was predicted. During the integration,
there was the assumption that flux is constant in an interval
[30].
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Table 2. Regulatory proteins and regulated genes in the central metabolic pathway in £. coli.

Genes controlled
by a regulatory protein

Regulatory
proteins

A set of genes controtled
by a regulatory protein

ArcA, CRP, DcuR, FadR, FIS,

acnA, acs, adhE, dctA, fumA,

aceBAK, cydAB, cyoABCDE, dcuB-fumB, fdnGHI, focA-pfIB,

Fnr, FruR, GalR, IcIR, IHF, Lacl, fumC, glpD, icd4, mdh, ndh, frdABCD, galETKM, gIpACB, gIpFK, lacZYA, nuoABEF-

MarA, Mlc, NarL, Pdh, RbsR, pgk, ppsA, pykF, zwf
Rob, RpiR, RpoN, SoxS, TrpR

GHIJKLMN, pdhR-aceEF-IpdA, ptsGHI-crr, rbsABCD, rpiB-
serA, sdhABCD-sucAB, tnaAB, trpEDCBA

RESULTS

Linkage of RMM and dFBAM
A simulation of dynamic regulatory elements in the
hierarchical regulation network was preformed through
linkage of RMM and dFBAM. RMM provides information
on interactions among elements in a hierarchical regulatory
* structure, delay time, and constraints for simulation.
_ Delay time is a period where a gene becomes active
from an inactive state, and an enzyme is synthesized and
degraded. The time consists of reaction time, transcription
time, and protein synthesis/degradation time. The average
synthesis and degradation times are equal at steady state
[2]. In this study, we set 0.5h as the total delay time;
reaction time between cAMP and CRP was set at 1 sec due
to a fast reaction; transcription time was lacAYZ=2 min;
tmaAB=1min by the length of gene sequence [25]; and
protein synthesis/degradation time was lacAYZ=28 min,
tmaAB=29 min.

dIFBAM provides information on substrate concentrations
and time profiles. The concentration changes in substrates
happen just after an operon turns on, and delay time is
added by the variation in an operon state, from off to on.
Time profile includes this delay time. Since the concentration
change represents an extracellular environment, they can
alter the on/off state of an operon. By following the above
procedure, linkage of RMM and dFBAM could lead to a
dynamic simulation of the total regulatory elements and
mechanism with environment conditions.

Parameters for Simulation

The modeling suggested in this paper was illustrated by
simulating regulatory elements with a hierarchical structure
of regulatory network (Fig. 3), a central metabolic pathway
[24], and parameters. LINGO (Lindo Systems Inc.), as a
software tool for optimization, was used to identify optimal
flux distribution in the central metabolic network of E. coli.
Matlab (The MathWorks, Inc.) was also used to calculate
and represent concentration changes and operons on/off
with time. As parameters for dFBA, initial condition (biomass:
0.011 g/l; glucose: 1.6 mM; lactose: 5.8 mM; tryptophan
1.0 mM; delay time: 0.5 h) and uptake rate constraints
(glucose: 6.5 mM/g:DCW-h; lactose: 3.0 mM/g-DCW-h;
tryptophan: 2.0 mM/g'DCW-h, estimated; and oxygen:
15.0 mM/g-DCW-h) were obtained from the literature [3].

Case Study 1. Glucose and Lactose in the Medium
When both glucose and lactose existed in the extracellular
environment, S1 of the stimulus level located in the highest
part of RMM was activated. Weight became W[1] due to the
existence of glucose. The value was propagated through arc.
At the modulon level, the value varied from W[1] to W[0]
through not gate, and cAMP was inactivated. This shows that
glucose makes the concentration level of cAMP low and the
cAMP/CRP complex can not be produced. W[0] from the
above result was transferred to the regulon/operon level. At
the regulon/operon level, O1 was inactivated by W[0]. NG1
was also inactivated due to choosing a positive control mode
by S1. W[0] from NG1 allowed P1 to be inactive, and finally,
gene transcription was turned off. At the gene level, lacAYZ
was inactivated by gene transcription weight value, W[0],
and /ac operon was turned off. This led to preventing lactose
metabolism at the metabolic pathway level. The inactive
state of lacAYZ was maintained until dFBAM returned to
the [0] value, which the glucose concentration was at. When
the glucose concentration was [0], only lactose was present
in S1. So, W[0] was sent to the modulon level through arc.
W[0] was varied to W[1] through not gate and E1, and RPI
became active since glucose was not present. The weight
value of the modulon level was, as mentioned above,
propagated to the lower levels step by step, and lacAYZ was
used for lactose metabolism at the metabolic pathway. The
metabolism was working until dFBAM returned to lactose
concentration [0]. The [0] value made lac operon off again.
The off time was also obtained from dFBAM.

The active/inactive state of the regulatory elements with
time [Fig. 4(b)] shows well that E. coli preferred glucose as
a carbon source and did not metabolize lactose until all the
glucose was used up [23]. The total time can be divided into
three parts: glucose metabolism, transport protein synthesis
for the lactose metabolism, lactose metabolism. To 0 h from
4.4 h, the glucose metabolism part, only RP1 was activated
and the others, E1, O1, NG1, P1, SGI1, and SW1, were
inactivated. S2 and RP2 related to local control were N (none)
due to global control. To 4.4 h from 4.9 h, E1, O1, P1, SG1,
and SW1, were activated for lactose as an alternate carbon
source, and to 8.5 h from 4.9 h, lactose was metabolized.

Case Study 2. Glucose and Tryptophan in the Medium
When both glucose and tryptophan were present, S1 and
S4 were activated at the same time. Performing the
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same mechanism as in Case Study 1, a global control
mode by the activated S1 allowed tnaA4B to be inactive.
The tna operon off state was maintained until dFBAM
returned to the [0] value in glucose concentration. When
only tryptophan was present in S1, the weight of S1 was
W[0]. W[0] was converted into W[1] through not gate.
Gene transcription in the regulon/operon level became
active by W[1]. Eventually, the gene level and metabolic
pathway level orderly became active and tryptophan was
metabolized.

The active state of S4 began at the regulon/operon level
and corresponded to a local control. By the activation of
both S4 and RP4, W[1] was sent to O3. Activation of O3
means binding tryptophan and the 7rpR regulatory protein
to the operator. Due to a negative control mode, NG3
became active and varied from W[1] to W[0]. W[0] from
the regulon/operon level was propagated to the gene level.
Finally, at the metabolic pathway level, trpEDCBA became
inactive, and the trp operon off was continuously in off
state, due to the existence of tryptophan.
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Fig. 4. Dynamic gene regulation for two carbon sources.
(a) Weight propagation in digraph. (b) Active/inactive regulatory elements with time. 1: Activation; 0: inactivation; N: none. (c) Metabolite concentration
change and lac operon on/off simulation. (—) glucose; (—) lactose; (—-) biomass.
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Figure 4b shows that when both glucose and tryptophan
in S1 were present, E. coli also preferred glucose to
tryptophan as an alternate carbon energy source. Glucose
metabolism, transport protein synthesis for tryptophan, and
tryptophan metabolism are divided. To Oh from 4.4 h,
glucose metabolism, S4, RP4, O3, and NG3 in addition
to S1 and RP1 became active by tryptophan. These results
showed that global and local control was preformed together.
However, S3 and RP3 in another local control became N
(none). To 4.4 h from 4.9 h, E1, O1, P1, SG1, and SW1
were activated for tryptophan metabolism. To 7.7 h from
4.9 h, tryptophan was metabolized. During the period, S4,
RP4, 03, and NG3 continuously became active in order
not to produce tryptophan.

DISCUSSION

In this paper, we have built a hierarchical regulatory network
with basic operon models in order to represent gene
regulation mechanisms in the central metabolic pathway of
E. coli and introduced a weight for a degree of connectivity.
Linking RMM and dFBAM, dynamic regulatory elements
for gene expression have been simulated.

FEach of the operons in RMM can show precedent
conditions and a flow of entire control for gene expression.
Figure 4(a) and Fig. 5(a) illustrate the conditions and
regulatory procedures that lacZYA in the lac operon, na4AB
in the tna operon, and #rpEDCBA in the trp operon become
active. Here, active or inactive states of genes were
determined by regulatory elements and effectors responding
to extracellular environmental changes with time. The carbon
source was preferentially metabolized, as a stimulus in the
upper or lower level was chosen and the operons or genes
were globally or locally controlled.

Genes regulated by more than a regulatory protein were
71.9% of the genes in the central metabolic pathway of
E. coli. This result shows that the central metabolic pathway
is sensitive to environmental changes.

The linkage of RMM and dFBA is capable of making
predictions about gene regulation, on/off states of operons,
and concentration changes of the carbon source with time.
These examples are also shown in Fig. 4 and Fig. 5. The
time profiles for glucose and lactose concentrations were
very similar to ones in a previous paper [15]. In our results,
when the off state of an operon was converted into the on
state, delay time was applied. The concentrations of lactose
and tryptophan as a carbon source were reduced in situations
where each of the operons was on. If the operon were off, a
decrease in the carbon source did not happen. From this
point of view, recognition of stimulus, modulon, and regulon
governing operons coordinately can be very important,
since an operon can become a constraint. In Fig. 5(c), the
linear decrease of tryptophan concentration occurs since

the growth rate of the cells is very low during metabolizing
tryptophan. Another similar response, shown as a linear
line, happens in the growth on acetate reutilization [3, 30].

Operons related to amino acid synthesis/degradation
have the opposite effect on each other. Interaction between
the tna operon and #rp operon serves as an example. Each
different mechanism is involved, therefore, these operons
do not turn on at the same time. In simulation results, the
tna operon turned on/off with a global control and the #p
operon turned on/off with a local control.

In summary, in order to solve problems that have not
been considered or generated in previous Boolean rule-
based dFBA, (I) a weight was introduced, (II) a hierarchical
structure for a regulatory network including Boolean symbols
was constructed, and (III) dynamic regulatory elements and
mechanisms required for gene expression were simulated.
These detailed simulation results can provide biologists
and engineers with useful information on cellular metabolism
regulation, regulatory proteins, genes, and effectors.
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APPENDIX

We used the following equations for prediction of substrate
concentration. -

S:SO+S—ML—1(X0 ~X)

X=Xo*e" "

So : Initial substrate concentration

S : Substrate concentration predicted for the next time
step

Su : Uptake rate constraints

Xo : Initial biomass

X :Initial biomass

p : Growth rate

At : Small time interval
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