• 제목/요약/키워드: regular semigroup.

검색결과 72건 처리시간 0.03초

ON DOUBLY STOCHASTIC ${\kappa}-POTENT$ MATRICES AND REGULAR MATRICES

  • Pyo, Sung-Soo
    • 대한수학회보
    • /
    • 제37권2호
    • /
    • pp.401-409
    • /
    • 2000
  • In this paper, we determine the structure of ${\kappa}-potent$ elements and regular elements of the semigroup ${\Omega}_n$of doubly stochastic matrices of order n. In connection with this, we find the structure of the matrices X satisfying the equation AXA = A. From these, we determine a condition of a doubly stochastic matrix A whose Moore-Penrose generalized is also a doubly stochastic matrix.

  • PDF

INTERVAL-VALUED FUZZY GENERALIZED BI-IDEALS OF A SEMIGROUP

  • Lee, Keon-Chang;Kang, Hee-Won;Hur, Kul
    • 호남수학학술지
    • /
    • 제33권4호
    • /
    • pp.603-616
    • /
    • 2011
  • We introduce the concept of an interval-valued fuzzy generalized bi-ideal of a semigroup, which is an extension of the concept of an interval-valued fuzzy bi-ideal (and of a noninterval-valued fuzzy bi-ideal and a noninterval-valued fuzzy ideal of a semi-group), and characterize regular semigroups, and both intraregular and left quasiregular semigroup in terms of interval-valued fuzzy generalized bi-ideals.

SOME RESULTS ON THE LOCALLY EQUIVALENCE ON A NON-REGULAR SEMIGROUP

  • Atlihan, Sevgi
    • 대한수학회논문집
    • /
    • 제28권1호
    • /
    • pp.63-69
    • /
    • 2013
  • On any semigroup S, there is an equivalence relation ${\phi}^S$, called the locally equivalence relation, given by a ${\phi}^Sb{\Leftrightarrow}aSa=bSb$ for all $a$, $b{\in}S$. In Theorem 4 [4], Tiefenbach has shown that if ${\phi}^S$ is a band congruence, then $G_a$ := $[a]_{{\phi}^S}{\cap}(aSa)$ is a group. We show in this study that $G_a$ := $[a]_{{\phi}^S}{\cap}(aSa)$ is also a group whenever a is any idempotent element of S. Another main result of this study is to investigate the relationships between $[a]_{{\phi}^S}$ and $aSa$ in terms of semigroup theory, where ${\phi}^S$ may not be a band congruence.

MORE GENERALIZED FUZZY SUBSEMIGROUPS/IDEALS IN SEMIGROUPS

  • Khan, Muhammad Sajjad Ali;Abdullah, Saleem;Jun, Young Bi;Rahman, Khaista
    • 호남수학학술지
    • /
    • 제39권4호
    • /
    • pp.527-559
    • /
    • 2017
  • The main motivation of this article is to generalized the concept of fuzzy ideals, (${\alpha},{\beta}$)-fuzzy ideals, (${\in},{\in}{\vee}q_k$)-fuzzy ideals of semigroups. By using the concept of $q^{\delta}_K$-quasi-coincident of a fuzzy point with a fuzzy set, we introduce the notions of (${\in},{\in}{\vee}q^{\delta}_k$)-fuzzy left ideal, (${\in},{\in}{\vee}q^{\delta}_k$)-fuzzy right ideal of a semigroup. Special sets, so called $Q^{\delta}_k$-set and $[{\lambda}^{\delta}_k]_t$-set, condition for the $Q^{\delta}_k$-set and $[{\lambda}^{\delta}_k]_t$-set-set to be left (resp. right) ideals are considered. We finally characterize different classes of semigroups (regular, left weakly regular, right weakly regular) in term of (${\in},{\in}{\vee}q^{\delta}_k$)-fuzzy left ideal, (${\in},{\in}{\vee}q^{\delta}_k$)-fuzzy right ideal and (${\in},{\in}{\vee}q^{\delta}_k$)-fuzzy ideal of semigroup S.

SPLIT MAP AND IDEMPOTENT SEPARATING CONGRUENCE

  • CHANDRASEKARAN V. M.;LOGANATHAN M.
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.351-360
    • /
    • 2005
  • Let T be a regular semigroup and let S be a regular subsemigroup of T. In this paper we study the relationship between the idempotent separating congruence on S and the idempotent separating congruence on T, when T and S are connected by a splitmap ${\theta} : T {\to} S$.

CHARACTERIZATION OF SEMIGROUPS BY FLAT AUTOMATA

  • Lee, O.;Shin, D.W.
    • 대한수학회지
    • /
    • 제36권4호
    • /
    • pp.747-756
    • /
    • 1999
  • In ring theory it is well-known that a ring R is (von Neumann) regular if and only if all right R-modules are flat. But the analogous statement for this result does not hold for a monoid S. Hence, in sense of S-acts, Liu (]10]) showed that, as a weak analogue of this result, a monoid S is regular if and only if all left S-acts satisfying condition (E) ([6]) are flat. Moreover, Bulmann-Fleming ([6]) showed that x is a regular element of a monoid S iff the cyclic right S-act S/p(x, x2) is flat. In this paper, we show that the analogue of this result can be held for automata and them characterize regular semigroups by flat automata.

  • PDF

FUZZY INTERIOR $\Gamma$-IDEALS IN ORDERED $\Gamma$-SEMIGROUPS

  • Khan, Asghar;Mahmood, Tariq;Ali, M. Irfan
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1217-1225
    • /
    • 2010
  • In this paper we define fuzzy interior $\Gamma$-ideals in ordered $\Gamma$-semigroups. We prove that in regular(resp. intra-regular) ordered $\Gamma$-semigroups the concepts of fuzzy interior $\Gamma$-ideals and fuzzy $\Gamma$-ideals coincide. We prove that an ordered $\Gamma$-semigroup is fuzzy simple if and only if every fuzzy interior $\Gamma$-ideal is a constant function. We characterize intra-regular ordered $\Gamma$-semigroups in terms of interior (resp. fuzzy interior) $\Gamma$-ideals.

ON SOME TYPE ELEMENTS OF ZERO-SYMMETRIC NEAR-RING OF POLYNOMIALS

  • Hashemi, Ebrahim;Shokuhifar, Fatemeh
    • 대한수학회지
    • /
    • 제56권1호
    • /
    • pp.183-195
    • /
    • 2019
  • Let R be a commutative ring with unity. In this paper, we characterize the unit elements, the regular elements, the ${\pi}$-regular elements and the clean elements of zero-symmetric near-ring of polynomials $R_0[x]$, when $nil(R)^2=0$. Moreover, it is shown that the set of ${\pi}$-regular elements of $R_0[x]$ forms a semigroup. These results are somewhat surprising since, in contrast to the polynomial ring case, the near-ring of polynomials has substitution for its "multiplication" operation.

Relation between Clifford Semigroups and Abelian Regular Rings

  • Kim, Jupil;Baek, Sungdo
    • 충청수학회지
    • /
    • 제7권1호
    • /
    • pp.1-11
    • /
    • 1994
  • The theory of inverse semigroups has many features in common with the theory of groups. Many different properties of semigroup become the same condition on ring. In this paper, we want to find the properties of semigroups which is preserved by the properties of ring. Also we find that many different properties become the equivalent conditions.

  • PDF