Honam Mathematical J. **33** (2011), No. 4, pp. 603–616 http://dx.doi.org/10.5831/HMJ.2011.33.4.603

INTERVAL-VALUED FUZZY GENERALIZED BI-IDEALS OF A SEMIGROUP

KEON CHANG LEE, HEE WON KANG^a, AND KUL HUR ^b

Abstract. We introduce the concept of an interval-valued fuzzy generalized bi-ideal of a semigroup, which is an extension of the concept of an interval-valued fuzzy bi-ideal (and of a noninterval-valued fuzzy bi-ideal of a semigroup), and characterize regular semigroups, and both intraregular and left quasiregular semigroup in terms of interval-valued fuzzy generalized bi-ideals.

1. Introduction

In 1975, Zadah[12] introduced the concept of an interval-valued fuzzy set as the generalization of a fuzzy set introduced by himself[11]. After then, Biswas[1] applied it to group theory, Garzalczany[6] proposed a method of inference based on interval-valued fuzzy sets, Roy and Biswas[10] studied interval-valued fuzzy relations, and Mondal and Samonta applied it to topology. Recently, Choi et al.[4] investigated intervalvalued smooth topological spaces, Hur et al.[7] studied interval-valued fuzzy relations in the sense of lattice theory, and Kang and Hur[7] applied the concept of an interval-valued fuzzy set to algebra. Furthermore, Cheong and Hur[3] investigated interval-valued fuzzy ideals and bi-ideals in a semigroup.

In this paper, we will introduce the concept of an interval-valued fuzzy generalized bi-ideal of a semigroup, which is an extension of the notion

Key words and phrases. interval-valued fuzzy set, interval-valued fuzzy ideal, interval-valued fuzzy bi-ideal, interval-valued fuzzy generalized bi-ideal.

Received October 11, 2011. Accepted October 26, 2011.

²⁰⁰⁰ Mathematics Subject Classification. 03F55, 20M12, 20M17.

^{*a,b*} Corresponding authors

This paper was supported by Wonkwang University in 2011.

of a noninterval-valued fuzzy generalized bi-ideal (and of a nonintervalvalued fuzzy bi-ideal and a noninterval-valued fuzzy ideal), and characterize such semigroups by interval-valued fuzzy generalized bi-ideals.

2. Preliminaries

We will list some concepts needed in the later sections.

Throughout this paper, we will denote the unit interval [0, 1] as I and for an ordinary subset A of a set X, we will denote the characteristic function of A as χ_A .

Definition 2.1. [6, 9, 12] Let X be a given nonempty set. A mapping $A = [A^L, A^U] : X \to D(I)$ is called an interval-valued fuzzy set (briefly, *IVFS*) in X, where A^L and A^U are fuzzy sets in X satisfying $A^L(x) \leq A^U(x)$ and $A(x) = [A^L(x), A^U(x)]$ for each $x \in X$. In particular, **0** and **1** denote the interval-valued fuzzy empty set and the interval-valued fuzzy whole set in X defined by $\mathbf{0}(x) = [0, 0]$ and $\mathbf{1}(x) = [1, 1]$ for each $x \in X$, respectively.

We will denote the set of all IVFSs in X as $D(I)^X$.

Notation. Let $X = \{x_1, x_2, \dots, x_n\}$. Then $A = ([a_1, b_1], [a_2, b_2], \dots, [a_n, b_n])$ denotes an IVFS in X such that $A^L(x_i) = a_i$ and $A^U(x_i) = b_i$, for all $i = 1, 2, \dots, n$.

Definition 2.2. [9] Let X be a nonempty set and let $A, B \in D(I)^X$. Then

- (a) $A \subset B$ iff $A^L(x) \leq B^L(x)$ and $A^U(x) \leq B^U(x)$ for all $x \in X$.
- (b) A = B iff $A \subset B$ and $B \subset A$.
- (c) The complement A^c of A is defined by $A^c(x) = [1 A^U(x), 1 A^L(x)]$ for all $x \in X$.
- (d) If $\{A_i : i \in J\}$ is an arbitrary subset of $D(I)^X$, then

$$\bigcap A_i(x) = [\bigwedge_{i \in J} A_i^L(x), \bigwedge_{i \in J} A_i^U(x)],$$
$$\bigcup A_i(x) = [\bigvee A_i^L(x), \bigvee A_i^U(x)].$$

 $i \in J$

 $i \in J$

3. Interval-valued fuzzy ideals of a semigroup

Definition 3.1. [7] Let (X, \circ) be a groupoid and let $A, B \in D(I)^X$. Then the interval-valued fuzzy product of A and B, $A \circ B$ is defined as follows : For each $x \in X$,

$$A \circ B(x) = \begin{cases} \begin{bmatrix} \bigvee_{x=yz} (A^L(y) \land B^L(z)), & \bigvee_{x=yz} (A^U(y) \land B^U(z)) \end{bmatrix} & \text{if } x = yz, \\ \begin{bmatrix} 0, 0 \end{bmatrix} & \text{otherwise.} \end{cases}$$

It is clear that for any $A, B, C \in D(I)^X$, if $B \subset C$, then $A \circ B \subset A \circ C$ and $B \circ A \subset C \circ A$.

Let S be a semigroup. By a subsemigroup of S we mean a non-empty subset of A of such that $A^2 \subset A$ and by a *left* [resp. *right*] *ideal* of S we mean a non-empty subset A of S such that $SA \subset A$ [resp. $AS \subset A$]. By *two-sided ideal* or simply *ideal* we mean a subset A of S which is both a left and a right ideal of S. We well denote the set of all left ideals [resp. right ideals and ideals] of S as LI(S) [resp. RI(S) and I(S)].

Definition 3.2. Let S be a semigroup and let $A \in D(I)^S$. Then A is called an :

(1) interval-valued fuzzy subsemigroup (in short, IVSG) of S if

$$A^{L}(xy) \ge A^{L}(x) \wedge A^{L}(y)$$
 and $A^{U}(xy) \ge A^{U}(x) \wedge A^{U}(y)$

for any $x, y \in S$,

(2) interval-valued fuzzy left ideal (in short, IVLI) of S if

$$A^{L}(xy) \ge A^{L}(y)$$
 and $A^{U}(xy) \ge A^{U}(y)$

for any $x, y \in S$,

(3) interval-valued fuzzy right ideal (in short, IVRI) of S if

$$A^{L}(xy) \ge A^{L}(x)$$
 and $A^{U}(xy) \ge A^{U}(x)$

for any $x, y \in S$,

(4) interval-valued fuzzy (two-sided) ideal (in short, IVI) of S if it is both an interval-valued fuzzy left and an interval-valued fuzzy right ideal of S.

We will denote the set of all IVSGs [resp. IVLIs, IVRIs and IVIs] of S as IVSG(S) [resp. IVLI(S), IVRI(S) and IVI(S)]. It is clear that $A \in IVI(S)$ if and only if $A^L(xy) \ge A^L(x) \land A^L(y)$ and $A^U(xy) \ge A^U(x) \land A^U(y)$ for any $x, y \in S$, and if $A \in IVLI(S)$ [resp. IVRI(S) and IVI(S)], then $A \in IVSG(S)$.

The following is the immediate result of Definition 3.1 and 3.2.

Theorem 3.3. Let S be a semigroup and let $\tilde{0} \neq A \in D(I)^S$. Then $A \in \text{IVSG}(S)$ if and only if $A \circ A \subset A$.

Result 3.A. [3, Theorem 3.2] Let A be a nonempty subset of a semigroup S. Then, A is a subsemigroup of S if and only if $[\chi_A, \chi_A] \in IVSG(S)$.

Result 3.B. [7, Proposition 6.6] Let A be a nonempty subset of a ring R. Then $A \in LI(R)$ [resp. RI(R) and I(R)] if and only if $[\chi_A, \chi_A] \in IVLI(R)$ [resp. IVRIR and IVI(R)].

Lemma 3.4. Let S be a semigroupiod let $A \in D(I)^S$. Then $A \in IVLI(S)$ if and only if $\mathbf{1} \circ A \subset A$.

Proof. (⇒) : Suppose $A \in \text{IVLI}(S)$ and let $a \in S$. Case (i) : Suppose $(\widetilde{1} \circ A)(a) = [0, 0]$. Then clearly $\widetilde{1} \circ A \subset A$. Case (ii) : Suppose $(\widetilde{1} \circ A)(a) \neq [0, 0]$. Then there exist $x, y \in S$ with a = xy. Thus

$$\begin{split} \left(\widetilde{1} \circ A\right)^{L}(a) &= \bigvee_{a=xy} \left(\widetilde{1}^{L}(x) \wedge A^{L}(y)\right) \\ &\leq \bigvee_{a=xy} \left(1 \wedge A^{L}(xy)\right) \text{ (Since } A \in \mathrm{IVLI}(S)) \\ &= \bigvee_{a=xy} \left(1 \wedge A^{L}(a)\right) = A^{L}(a). \end{split}$$

Similarly, we have $(\widetilde{1} \circ A)^U(a) \leq A^U(a)$. Hence, in all, $\widetilde{1} \circ A \subset A$.

 (\Leftarrow) : Suppose the necessary condition holds. Let $A \in D(I)^S$ and let a = xy for any $x, y \in S$. Then, by the hypothesis, $\tilde{1} \circ A \subset A$. Thus

$$A^{L}(xy) = A^{L}(a) \ge (\widetilde{1} \circ A)^{L}(a) = \bigvee_{a=bc} (\widetilde{1}^{L}(b) \wedge A^{L}(c))$$
$$\ge \widetilde{1}^{L}(x) \wedge A^{L}(y) \text{ (Since } a = xy)$$
$$= 1 \wedge A^{L}(y) = A^{L}(y).$$

Similarly, we have $A^U(xy) \ge A^U(y)$. Hence $A \in \text{IVLI}(S)$. This completes the proof.

Lemma 3.4' [The dual of Lemma 3.4] Let S be a semigroup and let $A \in D(I)^S$. Then $A \in IVRI(S)$ if and only if $A \circ \widetilde{1} \subset A$.

The combined effect of these two lemmas is as follows :

Theorem 3.5. Let S be a semigroup and let $A \in D(I)^S$. Then $A \in IVI(S)$ if and only if $\tilde{1} \circ A \subset A$ and $A \circ \tilde{1} \subset A$.

4. Interval-valued fuzzy generalized bi-ideals

A subsemigroup A of a semigroup S is called a *bi-ideal* of S if $ASA \subset$ A. We will denote the set of all bi-ideals of S as BI (S).

Definition 4.1. [3] Let S be a semigroup and let $A \in \text{IVSG}(S)$. Then A is called an interval-valued fuzzy bi-ideal (in short, IVBI) of S if

$$A^{L}(xyz) \ge A^{L}(x) \land A^{L}(z) \text{ and } A^{U}(xyz) \ge A^{U}(x) \land A^{U}(z)$$

for any $x, y, z \in S$.

We will denote the set of all IVBIs of S as IVBI(S).

Result 4.A. [3, Theorem 3.7] Let A be a non-empty subset of a semigroup S. Then $A \in BI(S)$ if and only if $[\chi_A, \chi_A] \in IVBI(S)$.

Remark 4.2. Let *S* be a semigroup.

- (a) If A is a fuzzy left ideal [resp. right ideal and bi-ideal] of S, then $A = [A, A] \in IVLI(S)$ [resp. IVRI(S), IVI(S) and IVBI(S)]. (b) If $A \in IVBI(S)$, then A^L and A^U are fuzzy bi-ideals of S.

A nonempty subset A of a semigroup S is called a *generalized bi-ideal* [8] if $ASA \subset A$. We will denote the set of all generalized bi-ideals of S as GBI(S).

Definition 4.3. Let S be a semigroup and let $A \in D(I)^S$. Then A is called an interval-valued fuzzy generalized bi-ideal(in short, IVGBI) of S if for any $x, y, z \in S$, $A^{L}(xyz) \geq A^{L}(x) \wedge A^{L}(z)$ and $A^{U}(xyz) \geq A^{L}(x) \wedge A^{L}(z)$ $A^U(x) \wedge A^U(z).$

We will denote the set of all IVGBIs of S as IVGBI(S). It is clear that $IVBI(S) \subset IVGBI(S)$. But the converse inclusion does not hold in general.

Example 4.4. Let $S = \{a, b, c, d\}$ be the semigroup with the following multiplication table:

We define a mapping $A: S \to D(I)$ as follows :

$$A(a) = [0.4, 0.5], A(b) = [0, 0], A(c) = [0.2, 0.8], A(d) = [0, 0].$$

Then we can easily show that $A \in IVGBI(S)$ but $A \notin IVBI(S)$.

Remark 4.5. Let S be a semigroup.

- (a) If A is a fuzzy generalized bi-ideal of S, then $[A, A] \in IVGBI(S)$.
- (b) If $A \in IVGBI(S)$, then A^L and A^U are fuzzy generalized bi-ideals of S.

The following two lemmas are easily seen.

Lemma 4.6. Let A be a nonempty subset of a semigroup S. Then $A \in \text{GBI}(S)$ if and only if $[\chi_A, \chi_A] \in \text{IVGBI}(S)$.

Lemma 4.7. Let S be a semigroup and let $A \in D(I)^S$. Then $A \in IVGBI(S)$ if and only if $A \circ \widetilde{1} \circ A \subset A$.

5. Regular semigroups

A semigroup S is said to be *regular* if for each $a \in S$, there exists an $x \in S$ such that a = axa.

Proposition 5.1. Let S be a regular semigroup. Then $IVGBI(S) \subset IVBI(S)$.

Proof. Let $A \in IVGBI(S)$ and let $a, b \in S$. Since S is regular, there exists an $x \in S$ such that b = bxb. Then $A^{L}(ab) = A^{L}(a(bxb)) = A^{L}(a(bxb)) \geq A^{L}(a) \wedge A^{L}(b)$. Similarly, we have $A^{U}(ab) \geq A^{U}(a) \wedge A^{U}(b)$. Thus $A \in IVSG(S)$. So $A \in IVBI(S)$. Hence $IVGBI(S) \subset IVBI(S)$.

Theorem 5.2. Let S be a semigroup. Then S is regular if and only if $A = A \circ \widetilde{1} \circ A$ for each $A \in \text{IVGBI}(S)$.

Proof. (\Rightarrow) : Suppose S is regular. Let $A \in \text{IVGBI}(S)$ and let $a \in S$. Since S is regular, there exists an $x \in S$ such that a = axa. Then

$$(A \circ \widetilde{1} \circ A)^{L}(a) = \bigvee_{a=yz} ((A \circ \widetilde{1})^{L}(y) \wedge A^{L}(z))$$

$$\geq (A \circ \widetilde{1})^{L}(ax) \wedge A^{L}(a) \text{ (Since } a = axa)$$

$$= \left(\bigvee_{ax=pq} A^{L}(p) \wedge \widetilde{1}^{L}(q)\right) \wedge A^{L}(a)$$

$$\geq A^{L}(a) \wedge \widetilde{1}^{L}(x) \wedge A^{L}(a)$$

$$= A^{L}(a) \wedge 1 \wedge A^{L}(a) = A^{L}(a).$$

Similarly, we have $(A \circ \widetilde{1} \circ A)^U(a) \ge A^U(a)$. Thus $A \subset A \circ \widetilde{1} \circ A$. Since $A \in IVGBI(S)$, by Lemma 4.7, $A \circ \widetilde{1} \circ A \subset A$. Hence $A = A \circ \widetilde{1} \circ A$.

(\Leftarrow): Suppose the necessary condition holds. Let $A \in \text{GBI}(S)$. There, by Lemma 4.6, $[\chi_A, \chi_A] \in \text{IVGBI}(S)$. Thus, by the hypothesis, $[\chi_A, \chi_A] \circ \widetilde{1} \circ [\chi_A, \chi_A] = [\chi_A, \chi_A]$. Let $a \in S$. Then

$$\left(\left[\chi_A,\chi_A\right]\circ\widetilde{1}\circ\left[\chi_A,\chi_A\right]\right)^L(a) = \bigvee_{a=yz} \left(\left(\left[\chi_A,\chi_A\right]\circ\widetilde{1}\right)^L(y)\wedge\chi_A(z)\right) = \chi_A(a) = 1.$$

Similarly, we have $([\chi_A, \chi_A] \circ \tilde{1} \circ [\chi_A, \chi_A])^U(a) = 1$. Thus there exist $b, c \in S$ with a = bc such that $([\chi_A, \chi_A] \circ \tilde{1})^L(b) = \chi_A(c) = 1$ and $([\chi_A, \chi_A] \circ \tilde{1})^U(b) = \chi_A(c) = 1$. So $\bigvee_{b=pq}(\chi_A(p) \wedge \tilde{1}^L(q)) = 1$ and $\bigvee_{b=pq}(\chi_A(p) \wedge \tilde{1}^U(q)) = 1$. Then there exist $d, e \in S$ with b = de such that $\chi_A(d) = \tilde{1}^L(e) = 1$ and $\chi_A(d) = \tilde{1}^U(e) = 1$. Thus $d \in A, e \in S, c \in S$ and $a = bc = (de)c \in ASA$. So $A \subset ASA$. Since $A \in GBI(S)$, it is clear that $ASA \subset A$. Hence A = ASA. Therefore A is regular. This completes the proof.

The following result is due to Lemma 4.7 and Theorem 5.2.

Theorem 5.3. A semigroup S is regular if and only if IVGBI(S) is a regular semigroup.

Theorem 5.4. A semigroup S is regular if and only if for each $A \in$ IVGBI(S) and each $B \in IVI(S)$, $A \cap B = A \circ B \circ A$.

Proof. (\Rightarrow) : Suppose *S* is regular. Let $A \in \text{IVGBI}(S)$ and let $B \in \text{IVI}(S)$. Then, by Lemma 4.7, $A \circ B \circ A \subset A \circ \widetilde{1} \circ A \subset A$. Also, $A \circ B \circ A \subset \widetilde{1} \circ B \circ \widetilde{1} \subset \widetilde{1} \circ B \subset B$. So $A \circ B \circ A \subset A \cap B$. Now let $a \in S$.

Since S is regular, there exists an $x \in S$ such that a = axa(=axaxa). Since $B \in IVI(S)$,

$$B^L(xax) \ge B^L(ax) \ge B^L(a)$$
 and $B^U(xax) \ge B^U(ax) \ge B^U(a)$.

Then

$$(A \circ B \circ A)^{L}(a) = \bigvee_{a=yz} (A^{L}(y) \wedge (B \circ A)^{L}(z))$$

$$\geq A^{L}(a) \wedge (B \circ A)^{L}(xaxa) \text{ (Since } a = axaxa)$$

$$= A^{L}(a) \wedge \left(\bigvee_{xaxa=pq} \left(B^{L}(p) \wedge A^{L}(p)\right)\right)$$

$$\geq A^{L}(a) \wedge B^{L}(xax) \wedge A^{L}(a)$$

$$\geq A^{L}(a) \wedge B^{L}(a) = (A \cap B)^{L}(a).$$

By the similar arguments, we have that $(A \circ B \circ A)^U(a) \ge (A \cap B)^U(a)$. So $A \cap B \subset A \circ B \circ A$. Hence $A \circ B \circ A = A \cap B$.

 (\Leftarrow) : Suppose the necessary condition holds. It is clear that $\mathbf{1} \in IVI(S)$. Let $A \in IVGBI(S)$. Then, by the hypothesis, $A = A \cap \widetilde{1} = A \circ \widetilde{1} \circ A$. Hence, by Theorem 5.2, S is regular. This completes the proof.

Result 5.A. [9, Theorems 1 and 4] Let S be a semigroup. Then the following are equivalent:

- (a) S is regular.
- (b) $A \cap L \subset AL$ for each $A \in \text{GBI}(S)$ and each $L \in \text{LI}(S)$.
- (c) $R \cap A \cap L \subset RAL$ for each $A \in GBI(S)$, each $L \in LI(S)$ and each $R \in RI(S)$.

Now we give a characterization of a regular semigroup in terms of interval-valued fuzzy generalized bi-ideals and interval-valued fuzzy biideals.

Theorem 5.5. Let S be a semigroup. Then the following are equivalent:

- (a) S is regular.
- (b) $A \cap B \subset A \circ B$ for each $A \in \text{IVBI}(S)$ and each $B \in \text{IVLI}(S)$.
- (c) $A \cap B \subset A \circ B$ for each $A \in IVGBI(S)$ and each $B \in IVLI(S)$.
- (d) $C \cap A \cap B \subset C \circ A \circ B$ for each $A \in \text{IVBI}(S)$, each $B \in \text{IVLI}(S)$ and each $C \in \text{IVRI}(S)$.

(e)
$$C \cap A \cap B \subset C \circ A \circ B$$
 for each $A \in IVGBI(S)$ and each $B \in IVRI(S)$.

Proof. (a) \Rightarrow (b): Suppose S is regular. Let $A \in \text{IVBI}(S)$, let $B \in \text{IVLI}(S)$ and let $a \in S$. Since S is regular, there exists an $x \in S$ such that a = axa. Then $(A \circ B)(a) \neq [0, 0]$. Thus

$$(A \circ B)^{L}(a) = \bigvee_{a=yz} (A^{L}(y) \wedge B^{L}(z))$$

$$\geq A^{L}(a) \wedge B^{L}(xa) \text{ (Since } a = axa)$$

$$\geq A^{L}(a) \wedge B^{L}(a) \text{ (Since } B \in \text{IVFLI}(S))$$

$$= (A \cap B)^{L}(a).$$

Similarly, we have $(A \circ B)^U(a) \ge (A \cap B)^U(a)$. Hence $A \cap B \subset A \circ B$. (b \Rightarrow (c): It is clear.

(c) \Rightarrow (a): Suppose the condition (c) holds. Let $A \in \text{GBI}(S)$, let $L \in \text{LI}(S)$ and let $a \in A \cap L$. Then $a \in A$ and $a \in L$. Since $A \in \text{GBI}(S)$, by Lemma 4.6, $[\chi_A, \chi_A] \in \text{IVGBI}(S)$. By Result 3.B, $[\chi_L, \chi_L] \in \text{IVLI}(S)$. Thus, by the hypothesis, $[\chi_A, \chi_A] \cap [\chi_L, \chi_L] \subset [\chi_A, \chi_A] \circ [\chi_L, \chi_L]$. So

 $([\chi_A, \chi_A] \circ [\chi_L, \chi_L])^L(a) \ge ([\chi_A, \chi_A] \cap [\chi_L, \chi_L])^L(a) = \chi_A(a) \land \chi_L(a) = 1.$

Similarly, we have that $([\chi_A, \chi_A] \circ [\chi_L, \chi_L])^U(a) \ge 1$. Then

$$([\chi_A, \chi_A] \circ [\chi_L, \chi_L])(a) \neq [0, 0].$$

Thus

$$\bigvee_{a=yz} (\chi_A(y) \wedge \chi_L(z)) = 1 \text{ and } \bigvee_{a=yz} (\chi_A(y) \wedge \chi_L(z)) = 1.$$

So there exist $b, c \in S$ with a = bc such that $\chi_A(b) = 1$ and $\chi_L(c) = 1$. Thus $b \in A$ and $c \in L$, i.e., $a = bc \in AL$. So $A \cap L \subset AL$. Hence, by Result 5.A, S is regular.

(a) \Rightarrow (d): Suppose S is regular. Let $A \in \text{IVBI}(S)$, let $B \in \text{IVLI}(S)$ and let $C \in \text{IVRI}(S)$. Since S is regular, there exists an $x \in S$ such that Keon Chang Lee, Hee Won Kang and Kul Hur

$$a = axa. \text{ Then}$$

$$(C \circ A \circ B)^{L}(a) = \bigvee_{a=yz} (C^{L}(y) \wedge (A \circ B)^{L}(z))$$

$$\geq C^{L}(ax) \wedge (A \circ B)^{L}(a) \text{ (Since } a = axa)$$

$$\geq C^{L}(a) \wedge \left(\bigvee_{a=pq} (A^{L}(p) \wedge B^{L}(q))\right) \text{ (Since } C \in \text{IVRI}(S))$$

$$\geq C^{L}(a) \wedge A^{L}(a) \wedge B^{L}(xa) \text{ (Since } a = axa)$$

$$\geq C^{L}(a) \wedge A^{L}(a) \wedge B^{L}(a) \text{ (Since } C \in \text{IVRI}(S))$$

$$= (C \cap A \cap B)^{L}(a).$$

Similarly, we have that $(C \circ A \circ B)^U(a) \ge (C \cap A \cap B)^U(a)$. Hence $C \cap A \cap B \subset C \circ A \circ B$.

(d) \Rightarrow (e): It is clear.

(e) \Rightarrow (a): Suppose the condition (e) holds. Let $A \in \text{GBI}(S)$, let $B \in \text{LI}(S)$ and let $R \in \text{RI}(S)$. Let $a \in R \cap A \cap L$. Then $a \in R, a \in A$ and $a \in L$. Since $A \in \text{GBI}(S)$, by Lemma 4.6, $[\chi_A, \chi_A] \in \text{IVGBI}(S)$. By Result 3.B, $[\chi_R, \chi_R] \in \text{IVRI}(S)$ and $[\chi_L, \chi_L] \in \text{IVLI}(S)$. By the hypothesis,

$$[\chi_R,\chi_R] \cap [\chi_A,\chi_A] \cap [\chi_L,\chi_L] \subset [\chi_R,\chi_R] \circ [\chi_A,\chi_A] \circ [\chi_L,\chi_L].$$

Then

$$([\chi_R,\chi_R] \circ [\chi_A,\chi_A] \circ [\chi_L,\chi_L])^L(a) \ge ([\chi_R,\chi_R] \cap [\chi_A,\chi_A] \cap [\chi_L,\chi_L])^L(a)$$
$$= \chi_R(a) \wedge \chi_A(a) \wedge \chi_L(a) = 1.$$

Similarly, we have that

$$((\chi_R, \chi_R] \circ [\chi_A, \chi_A] \circ [\chi_L, \chi_L])^U(a) \ge 1.$$

Thus $[\chi_R, \chi_R] \circ [\chi_A, \chi_A] \circ [\chi_L, \chi_L] \neq [0, 0]$. So

$$\bigvee_{a=yz} (([\chi_R,\chi_R] \circ [\chi_A,\chi_A])^L(y) \land \chi_L(z)) = 1.$$

Similarly, we have that

$$\bigvee_{a=yz} (([\chi_R, \chi_R] \circ [\chi_A, \chi_A])^U(y) \land \chi_L(z)) = 1.$$

Then there exist $b, c \in S$ with a = bc such that

$$([\chi_R, \chi_R] \circ [\chi_A, \chi_A])^L(b) = 1,$$

$$([\chi_R, \chi_R] \circ [\chi_A, \chi_A])^U(b) = 1$$

and

(5.1)
$$\chi_L(c) = 1$$

Thus $([\chi_R, \chi_R] \circ [\chi_A, \chi_A])(b) \neq [0, 0]$. So

$$\bigvee_{b=pq} (\chi_R(p) \wedge \chi_A(q)) = 1 \text{ and } \bigvee_{b=pq} (\chi_R(p) \wedge \chi_A(q)) = 1.$$

Then there exist $d, e \in S$ with b = de such that

(5.2)
$$\chi_R(d) = 1 \text{ and } \chi_A(e) = 1$$

By (5.1) and (5.2), $d \in R$, $e \in A$ and $c \in L$. Thus $a = bc = dec \in RAL$. So $R \cap A \cap L \subset RAL$. Hence, by Result 4.A, S is regular. This completes the proof.

6. Left quasiregular semigroups

A semigroup S is said to be *left quasiregular* if every left ideal of S is globally idempotent.

Result 6.A. [2, Proposition 1.1] A semigroup S is left quasiregular if and only if for each $a \in S$, there exist $x, y \in S$ such that a = xaya.

The following result can be easily proved.

Lemma 6.1. Let S be a semigroup. If S is left quasiregular, then IVGBI(S) = IVBI(S), i.e., $IVGBI(S) \subset IVBI(S)$.

Lemma 6.2. Let S be a semigroup. Then S is left quasiregular if and only if $A \circ A = A$ for each $A \in IVLI(S)$.

Proof. (\Rightarrow) : Suppose S is left quasiregular, and let $A \in IVLI(S)$. Then, by Theorem 3.3, $A \circ A \subset A$. Let $a \in S$. Then, by Result 6.A, there exist $x, y \in S$ such that a = xaya. Thus

$$(A \circ A)^{L}(a) = \bigvee_{\substack{a=pq}} (A^{L}(p) \wedge A^{L}(q))$$

$$\geq A^{L}(xa) \wedge A^{L}(ya) \text{ (Since } a = xaya)$$

$$\geq A^{L}(a) \wedge A^{L}(a) \text{ (Since } A \in \text{IVFLI}(S))$$

$$= A^{L}(a).$$

Similarly, we have that $(A \circ A)^U(a) \ge A^U(a)$. So $A \subset A \circ A$. Hence $A \circ A = A$.

(\Leftarrow): Suppose the necessary condition holds. Let $L \in LI(S)$ and let $a \in L$. By Result 3.B, $[\chi_L, \chi_L] \in IVLI(S)$. Then, by the hypothesis, $[\chi_L, \chi_L] \circ [\chi_L, \chi_L] = [\chi_L, \chi_L]$. Thus

 $([(\chi_L, \chi_L] \circ [\chi_L, \chi_L])^L(a) = \chi_L(a) = 1 \text{ and } ([\chi_L, \chi_L] \circ [\chi_L, \chi_L])^U(a) = \chi_L(a) = 1.$

So $([\chi_L, \chi_L] \circ [\chi_L, \chi_L])(a) \neq [0, 0]$. Then $\bigvee_{a=pq}(\chi_L(p) \wedge \chi_L(q)) = 1$. Thus there exist $b, c \in S$ with a = bc such that $\chi_L(b) = 1, \chi_L(c) = 1$. So $b \in L$, i.e., $a = bc \in LL$. Then $L \subset LL$. It is clear that $LL \subset L$. Thus L = LL. Hence S is left quasiregular. This completes the proof. \Box

A semigroup S is said to be *intraregular* if for each $a \in S$, there exist $x, y \in S$ such that $a = xa^2y$.

Result 6.B. [9, Theorem 6] Let S be a semigroup. Then S is both intraregular and left quasiregualr if and only if for each $B \in \text{GBI}(S)$, each $L \in \text{LI}(S)$ and each $R \in \text{RI}(S)$, $L \cap R \cap B \subset LRB$.

We give a characterization of a semigroup that is both intraregular and left quasiregular in terms of interval-valued fuzzy sets.

Theorem 6.3. Let S be a semigroup. Then the following are equivalent:

- (a) S is both intraregular and left quasiregular.
- (b) $B \cap C \cap A \subset B \circ C \circ A$ for each $A \in \text{IVBI}(S)$, each $B \in \text{IVLI}(S)$ and each $C \in \text{IVRI}(S)$.
- (c) $B \cap C \cap A \subset B \circ C \circ A$ for each $A \in IVGBI(S)$, each $B \in IVLI(S)$ and each $C \in IVRI(S)$.

Proof. (b) \Rightarrow (c): It is clear.

(c) \Rightarrow (a): It can be seen as in the proof of Theorem 5.5[(e) implies (a)].

(a) \Rightarrow (b): Suppose the condition (a) holds. Let $A \in \text{IVBI}(S)$, let $B \in \text{IVLI}(S)$ and let $C \in \text{IVRI}(S)$. Let $a \in S$. Since S is left quasiregular, by Result 6.A, there exist $u, v \in S$ such that a = uava. Then

$$a = uava = u(xa^2y)va = ((ux)a)((a(yv))a).$$

Thus

$$(B \circ C \circ A)^{L}(a) = \bigvee_{a=pq} (B^{L}(p) \wedge (C \circ A)^{L}(q))$$

$$\geq B^{L}((ux)a) \wedge (C \circ A)^{L}((avy)a)$$

$$\geq B^{L}(a) \wedge \left(\bigvee_{ayva=pq} (C^{L} \wedge A^{L}(q))\right) \text{ (Since } B \in \text{IVLI}(S))$$

$$\geq B^{L}(a) \wedge C^{L}(a(yv)) \wedge A^{L}(a)$$

$$\geq B^{L}(a) \wedge C^{L}(a) \wedge A^{L}(a) \text{ (Since } C \in \text{IVRI}(S))$$

$$= (B \cap C \cap A)^{L}(a).$$

Similarly, we have $(B \circ C \circ A)^U(a) \ge (B \cap C \cap A)^U(a)$. Hence $B \cap C \cap A \subset B \circ C \circ A$. This completes the proof.

References

- R. Biswas, Rosenfeld's fuzzy subgroups with interval-values membership functions, Fuzzy Sets and Systems 63 (1995), 87-90.
- [2] J. Calais, Semi-groups quasi-invariants, C.R.AcAd. Sci.Paris 252(1961), 2357-2359.
- [3] Minseok Cheong and K. Hur, Interval-valued fuzzy ideals and bi-ideals of a semigroup, To be sunmitted.
- [4] J. Y. Choi, S. R. Kim and K. Hur, Interval-valued smooth topological spaces, Honam Math. J. 32(4) (2010), 711-738.
- [5] K. Hur, J. G. Lee and J. Y. Choi, Interval-valued fuzzy relations, J. Korean Institute of Intelligent Systems, 19(3) (2009), 425-431.
- [6] M. B. Gorzalczany, A method of inference in approximate reeasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems 21 (1987), 1-17.
- [7] H. W. Kang and K. Hur, Intuitionistic fuzzy ideals and bi-ideals, Honam Math. J. 26(3) (2004), 309-330.
- [8] _, Interval-valued fuzzy subgroups and rings, Honam Math. J. 32(4) (2010), 593-617.
- S. Lajos, On generalized bi-ideals in semigroups, Coll. Math. Soc, Janos Bilyai, 20, Algebraic Theory of Semigroups (G. Ponak, Ed.), North-Holland (1979), 335-340.
- [10] T. K. Monda and S. K. Samanta, Topology of interval-valued fuzzy sets, Indian J. Pure Appl. Math. 30 no. 1 (1999), 23-38.
- [11] M. K. Roy and R. Biswas, Interval-valued fuzzy relations and Sanchez's approach for medical diagnosis, Fuzzy Sets and Systems 47 (1992), 35-38.
- [12] L. A. Zadeh, Fuzzy sets, Inform. and Central 8 (1965), 338-353.
- [13] _, The concept of a linguistic variable and its application to approximate reasoning I, Inform. Sci. 8 (1975), 199-249.

Keon Chang Lee, Hee Won Kang and Kul Hur

Keon Chang Lee Department of Computer Science, Dongshin University, Naju , Korea. E-mail: kclee@dsu.ac.kr

616

Hee Won Kang Department of Mathematics Education, Woosuk University, Wanju-kun 570-749, Korea. E-mail: khwon@woosuk.ac.kr

Kul Hur Division of Mathematics and Informational Statistics and Nanoscale Science and Technology Institute, Wonkwang University, Iksan 570-749, Korea. E-mail: kulhur@wonkwang.ac.kr