• 제목/요약/키워드: regular ordered semigroup

검색결과 18건 처리시간 0.024초

ON LEFT REGULAR po-SEMIGROUPS

  • Lee, Sang-Keun;Jung, Jae-Hong
    • 대한수학회논문집
    • /
    • 제13권1호
    • /
    • pp.1-6
    • /
    • 1998
  • The paper refers to ordered semigroups in which $x^2 (x \in S)$ are left ideal elements. We mainly show that this $po$-semigroup is left regular if and only if S is a union of left simple subsemigroups of S.

  • PDF

INTUITIONISTIC FUZZY IDEALS IN ORDERED SEMIGROUPS

  • Khan, Asghar;Khan, Madad;Hussain, Saqib
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.311-324
    • /
    • 2010
  • We prove that a regular ordered semigroup S is left simple if and only if every intuitionistic fuzzy left ideal of S is a constant function. We also show that an ordered semigroup S is left (resp. right) regular if and only if for every intuitionistic fuzzy left(resp. right) ideal A = <$\mu_A$, $\gamma_A$> of S we have $\mu_A(a)\;=\;\mu_A(a^2)$, $\gamma_A(a)\;=\;\gamma_A(a^2)$ for every $a\;{\in}\;S$. Further, we characterize some semilattices of ordered semigroups in terms of intuitionistic fuzzy left(resp. right) ideals. In this respect, we prove that an ordered semigroup S is a semilattice of left (resp. right) simple semigroups if and only if for every intuitionistic fuzzy left (resp. right) ideal A = <$\mu_A$, $\gamma_A$> of S we have $\mu_A(a)\;=\;\mu_A(a^2)$, $\gamma_A(a)\;=\;\gamma_A(a^2)$ and $\mu_A(ab)\;=\;\mu_A(ba)$, $\gamma_A(ab)\;=\;\gamma_A(ba)$ for all a, $b\;{\in}\;S$.

FUZZY INTERIOR $\Gamma$-IDEALS IN ORDERED $\Gamma$-SEMIGROUPS

  • Khan, Asghar;Mahmood, Tariq;Ali, M. Irfan
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1217-1225
    • /
    • 2010
  • In this paper we define fuzzy interior $\Gamma$-ideals in ordered $\Gamma$-semigroups. We prove that in regular(resp. intra-regular) ordered $\Gamma$-semigroups the concepts of fuzzy interior $\Gamma$-ideals and fuzzy $\Gamma$-ideals coincide. We prove that an ordered $\Gamma$-semigroup is fuzzy simple if and only if every fuzzy interior $\Gamma$-ideal is a constant function. We characterize intra-regular ordered $\Gamma$-semigroups in terms of interior (resp. fuzzy interior) $\Gamma$-ideals.

INTUITIONISTIC FUZZY SEMIPRIME IDEALS OF ORDERED SEMIGROUPS

  • Kim, Kyung Ho
    • 충청수학회지
    • /
    • 제22권2호
    • /
    • pp.235-243
    • /
    • 2009
  • In this paper, we introduce the notion of intuitionistic fuzzy semiprimality in an ordered semigroup, which is an extension of fuzzy semiprimality and investigate some properties of intuitionistic fuzzification of the concept of several ideals.

  • PDF

ON THE LEFT REGULAR po-Γ-SEMIGROUPS

  • Kwon, Young In;Lee, Sang Keun
    • Korean Journal of Mathematics
    • /
    • 제6권2호
    • /
    • pp.149-154
    • /
    • 1998
  • We consider the ordered ${\Gamma}$-semigroups in which $x{\gamma}x(x{\in}M,{\gamma}{\in}{\Gamma})$ are left elements. We show that this $po-{\Gamma}$-semigroup is left regular if and only if M is a union of left simple sub-${\Gamma}$-semigroups of M.

  • PDF

ON (m, n)-IDEALS OF AN ORDERED ABEL-GRASSMANN GROUPOID

  • YOUSAFZAI, FAISAL;KHAN, ASAD;IAMPAN, AIYARED
    • Korean Journal of Mathematics
    • /
    • 제23권3호
    • /
    • pp.357-370
    • /
    • 2015
  • In this paper, we introduce the concept of (m, n)-ideals in a non-associative ordered structure, which is called an ordered Abel-Grassmann's groupoid, by generalizing the concept of (m, n)-ideals in an ordered semigroup [14]. We also study the (m, n)-regular class of an ordered AG-groupoid in terms of (m, n)-ideals.

ANTI-HYBRID INTERIOR IDEALS IN ORDERED SEMIGROUPS

  • LINESAWAT, KRITTIKA;LEKKOKSUNG, SOMSAK;LEKKOKSUNG, NAREUPANAT
    • Journal of applied mathematics & informatics
    • /
    • 제40권3_4호
    • /
    • pp.769-784
    • /
    • 2022
  • The main theme of this present paper is to study ordered semigroups in the context of anti-hybrid interior ideals. The notion of anti-hybrid interior ideals in ordered semigroups is introduced. We prove that the concepts of ideals and interior coincide in some particular classes of ordered semigroups; regular, intra-regular, and semisimple. Finally, the characterization of semisimple ordered semigroups in terms of anti-hybrid interior ideals is considered.

WIENER-HOPF C*-ALGEBRAS OF STRONGL PERFORATED SEMIGROUPS

  • Jang, Sun-Young
    • 대한수학회보
    • /
    • 제47권6호
    • /
    • pp.1275-1283
    • /
    • 2010
  • If the Wiener-Hopf $C^*$-algebra W(G,M) for a discrete group G with a semigroup M has the uniqueness property, then the structure of it is to some extent independent of the choice of isometries on a Hilbert space. In this paper we show that if the Wiener-Hopf $C^*$-algebra W(G,M) of a partially ordered group G with the positive cone M has the uniqueness property, then (G,M) is weakly unperforated. We also prove that the Wiener-Hopf $C^*$-algebra W($\mathbb{Z}$, M) of subsemigroup generating the integer group $\mathbb{Z}$ is isomorphic to the Toeplitz algebra, but W($\mathbb{Z}$, M) does not have the uniqueness property except the case M = $\mathbb{N}$.