• 제목/요약/키워드: regular forms

검색결과 166건 처리시간 0.019초

An efficient seismic analysis of regular skeletal structures via graph product rules and canonical forms

  • Kaveh, A.;Zakian, P.
    • Earthquakes and Structures
    • /
    • 제10권1호
    • /
    • pp.25-51
    • /
    • 2016
  • In this study, graph product rules are applied to the dynamic analysis of regular skeletal structures. Graph product rules have recently been utilized in structural mechanics as a powerful tool for eigensolution of symmetric and regular skeletal structures. A structure is called regular if its model is a graph product. In the first part of this paper, the formulation of time history dynamic analysis of regular structures under seismic excitation is derived using graph product rules. This formulation can generally be utilized for efficient linear elastic dynamic analysis using vibration modes. The second part comprises of random vibration analysis of regular skeletal structures via canonical forms and closed-form eigensolution of matrices containing special patterns for symmetric structures. In this part, the formulations are developed for dynamic analysis of structures subjected to random seismic excitation in frequency domain. In all the proposed methods, eigensolution of the problems is achieved with less computational effort due to incorporating graph product rules and canonical forms for symmetric and cyclically symmetric structures.

MODIFICATION OF REGULAR FUNCTIONS ON TERNARY REAL NUMBERS IN THE VIEW OF QUATERNION

  • Ji Eun Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권3호
    • /
    • pp.913-927
    • /
    • 2024
  • In this paper, we represent regular functions on ternary theory in the view of quaternion. By expressing quaternions using ternary number theory, a new form of regular function, called E-regular, is defined. From the defined regular function, we investigate the properties of the appropriate hyper-conjugate harmonic functions and corresponding Cauchy-Riemann equations by pseudo-complex forms.

형식불역의 원리를 통한 고차원 도형의 탐구 (An investigation on the hyper-dimensional figure by the principle of the permanence of equivalent forms)

  • 송상헌
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제13권4호
    • /
    • pp.495-506
    • /
    • 2003
  • 본 논문에서는 형식불역의 원리를 적용하여 4차원 이상의 고차원 도형 중 특별한 몇 가지 도형의 기하학적 모델을 탐구해 보면서 이것이 기존의 일반적인 수학적 성질과 원리, 법칙에 모순됨이 없는지를 검증해 보았다. 정다면체는 5개뿐이라는 설명 방식에 형식불역의 원리를 적용하면 4차원 정다포체는 6개뿐임을 설명할 수 있다. 그리고 두 가지 정의(기둥형과 뿔형)에 의해 만들어진 볼록한 고차원 도형들은 다면체에서의 오일러 정리를 일반화한 오일러 특성수에 정확히 들어맞는다는 것을 확인할 수 있다. 특히, 뿔형의 경우는 그 도형의 꼭지점, 모서리, 면, 입체 등의 개수들이 파스칼의 삼각형 구조를 이루고 있으며 기둥형의 경우는 임의로 정한 수의 모든 약수들을 하세의 다이어그램을 통해 약수와 배수의 관계로 표현할 수 있다. 이러한 소재들은 영재 교수학습용 자료로도 활용할 수 있을 것이다.

  • PDF

DIVISIBILITY AND ARITHMETIC PROPERTIES OF CERTAIN ℓ-REGULAR OVERPARTITION PAIRS

  • ANUSREE ANAND;S.N. FATHIMA;M.A. SRIRAJ;P. SIVA KOTA REDDY
    • Journal of applied mathematics & informatics
    • /
    • 제42권4호
    • /
    • pp.969-983
    • /
    • 2024
  • For an integer ℓ ≥ 1, let ${\bar{B}}_{\ell}(n)$ denotes the number of ℓ-regular over partition pairs of n. For certain conditions of ℓ, we study the divisibility of ${\bar{B}}_{\ell}(n)$ and arithmetic properties for ${\bar{B}}_{\ell}(n)$. We further obtain infinite family of congruences modulo 2t satisfied by ${\bar{B}}_3(n)$ employing a result of Ono and Taguchi (2005) on nilpotency of Hecke operators.

ON PRESERVING rg-CLOSED SETS

  • Park, Jin-Han;Park, Jin-Keun;Park, Seong-Jun
    • East Asian mathematical journal
    • /
    • 제16권1호
    • /
    • pp.125-133
    • /
    • 2000
  • Weak forms of regular continuity and regular closure are introduced and used to strengthen some results concerning the preservation of rg-closed sets.

  • PDF

DIRICHLET FORMS AND DIFFUSION PROCESSES RELATED TO QUANTUM UNBOUNDED SPIN SYSTEMS

  • Lim, Hye-Young;Park, Yong-Moon;Yoo, Hyun-Jae
    • 대한수학회지
    • /
    • 제33권4호
    • /
    • pp.823-855
    • /
    • 1996
  • We study Dirichlet forms and the associated diffusion processes for the Gibbs measures related to the quantum unbounded spin systems (lattice boson systems) interacting via superstable and regular potentials. This work is a continuation of the author's previous study on the classical systems [LPY] to the quantum cases. In [LPY], we constructed Dirichlet forms and the associated diffusion processes for the Gibbs measures of classical unbounded spin systems. Furthermore, we also showed the essential self-adjointness of the Dirichlet operator and the log-Sobolev inequality for any Gibbs measure under appropriate conditions on the potentials. In this atudy we try to extend the results of the classical systems to the quantum cases. Because of some technical difficulties, we are only able to construct a Dirichlet form and the associated diffusion process for any Gibbs measure of the quantum systems. We utilize the general scheme of the previous work on the theory in infinite dimensional spaces [AH-K1-2, AKR, AR1-2, Kus, MR, Ro, Sch] and the ideas we employed in our study of the calssical systems ]LPY].

  • PDF