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Abstract. For an integer ℓ ≥ 1, let B̄ℓ(n) denotes the number of ℓ-regular

over partition pairs of n. For certain conditions of ℓ, we study the divisibil-
ity of B̄ℓ(n) and arithmetic properties for B̄ℓ(n). We further obtain infinite

family of congruences modulo 2t satisfied by B̄3(n) employing a result of

Ono and Taguchi (2005) on nilpotency of Hecke operators.
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1. Introduction

A partition of n is a non-increasing sequence of positive integers whose sum
is n. In [3], Corteel and Lovejoy introduced overpartitions. An overpartition of
n is a partition where the first occurrence of a number may be overlined. In [8],
Lovejoy investigated the ℓ-regular overpartition Āℓ(n), which counts the number
of overpartitions of n with parts not divisible by ℓ. For example, Ā2(3) = 4 with
the relevant partitions being 3, 3̄, 1+ 1+ 1, 1̄ + 1+ 1. The generating function
of Āℓ(n) is given by

∞∑
n=0

Āℓ(n)q
n =

f2f
2
ℓ

f2
1 f2ℓ
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where, for any positive integer k,

fk := (qk; qk)∞ =

∞∏
n=1

(1− qkn), |q| < 1.

The arithmetic of ℓ-regular overpartition has received a great deal of attention
(See for example [1,12]). In [17], Shen proved a number of arithmetic properties
of Āℓ(n) and gave a combinatorial interpretation for Ā3(9n+3) and Ā3(9n+6)
being divisible by 3. Chiranjt and Kalyan [15] studied the divisibility of Āℓ(n)

by pji ’s similar to the works of [2,5,13,14]. In [4], the authors explored the arith-
metic properties of Fu’s k dots bracelet partition where k = pα, p is a prime
number with p ≥ 5 and α is an integer with α ≥ 0.

The notation of ℓ-regular overpartition pairs B̄ℓ(n) were introduced by Ma-
hadeva Naika and Shivashankar [10], which counts the number of overpartition
pairs of n with no parts divisible by ℓ. The generating function of B̄ℓ(n) is given
by

∞∑
n=0

B̄ℓ(n)q
n =

f2
2 f

4
ℓ

f4
1 f

2
2ℓ

. (1)

Shivashankar and Gireesh [18] established some Ramanujan like congruences for
B̄ℓ(n), where ℓ ∈ {3, 4, 5, 8}. In our main theorem, we study the divisibility
properties of B̄ℓ(n), and extend the results on arithmetic properties of B̄ℓ(n) to
other values of ℓ. Let p be prime divisor of ℓ. In our first result, we prove that
B̄ℓ(n) is almost always divisible by any powers of p under certain conditions on
p and ℓ. To be specific, we prove the following:

Theorem 1.1. Let ℓ = p1
a1p2

a2 ...pm
am be the prime factorization of an odd

integer ℓ ≥ 3 . If pi
2ai ≥ ℓ, then for every positive integer j,

lim
X→∞

#{0 < n ≤ X : B̄ℓ(n) ≡ 0 (mod pji )}
X

= 1.

If ℓ is an odd prime, we obtain the Corollary 1.2 of Theorem 1.1.

Corollary 1.2. If p > 3 is a prime number, then for every positive integer k,
we have

lim
X→∞

#{0 < n ≤ X : B̄p(n) ≡ 0 (mod pk)}
X

= 1.

Next, we study the divisibility of B̄p(n) modulo any powers of 2.

Theorem 1.3. For every positive integer k ≥ 1, and for all prime p satisfying
p ≤ 2k−1, we have:

lim
X→∞

#{0 < n ≤ X : B̄p(n) ≡ 0 (mod 2k)}
X

= 1.
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Theorem 1.4. Let ℓ ≡ 3 (mod 4) be a positive integer and pi’s are prime
numbers such that for 1 ≤ i ≤ k + 1, pi ≡ 3 (mod 4). Then for non-negative
integers k, n and any integer s ̸≡ 0 (mod pk+1), we have

B̄ℓ

(
4p21p

2
2 · · · p2kp2k+1n+ p21p

2
2 · · · p2kpk+1(pk+1 + 4s)

)
≡ 0 (mod 16).

Different infinite families of congruence can be obtained from Theorem 1.4. Let
ℓ ≡ 3 (mod 4) be a positive integer and p be prime such that for p ≡ 3 (mod 4).
Suppose p1 = p2 = · · · = pk+1 = p. then for any integer s ̸≡ 0 (mod p), we
have:

B̄ℓ

(
4p2k+2n+ p2k+1(p+ 4s)

)
≡ 0 (mod 16).

In particular for all non-negative integer n and j ̸≡ 0 (mod 11),

B̄7 (484n+ 121 + 44s) ≡ 0 (mod 16).

In the next theorem, we prove similar result using result of Serre [16] on the
action of Hecke operators on cusp forms.

Theorem 1.5. Let ℓ be a positive integer and pi’s are prime numbers such that
for 1 ≤ i ≤ k + 1, pi ≡ −1 (mod 18). And let k, n ≥ 0, then for any integer
s ̸≡ 0 (mod pk+1), we have

B̄3ℓ

(
3p21p

2
2 · · · p2kp2k+1n+ p21p

2
2 · · · p2kpk+1(pk+1 + 3s)

)
≡ 0 (mod 8).

In the following theorem, using a result of Ono and Taguchi [11] on nilpotency
on Hecke operators, we derive infinite family of congruences modulo 2t satisfied
by B̄3(n).

Theorem 1.6. Let n be a non-negative integer. Then there is an integer s ≥ 0
such that for every t ≥ 1 and distinct primes p1, · · · ps+t coprime to 6, we have
for n coprime to p1, · · · ps+t,

B̄3

(p1 · · · ps+t · n
24

)
≡ 0 (mod 2t).

2. Preliminaries

In this section we discuss some definitions and results related to Modular
Forms. Let H denote the upper half plane. The complex vector space of weight
k (positive integer) with respect to a congruence subgroup Γ will be denoted by
Mk(Γ).

Definition 2.1. Let χ be a Dirichlet character modulo N (a positive integer).
Then a modular form f ∈ Mk(Γ1(N)) has Nebentypus character χ if

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z), (2)

for all z ∈ H and all

[
a b
c d

]
∈ Γ0(N). The space of such modular form is de-

noted by Mk(Γ0(N), χ). Here Γ0(N) will be the principal congruence subgroup
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of level N .

The Dedekind’s eta-function (η(z)) is defined by

η(z) := q
1
24 f1 = q

1
24

∞∏
n=1

(1− qn), (3)

where q = e2πiz and z ∈ H. A function f(z) is called an eta-quotient if it is of
the form

f(z) =
∏
δ|N

η(δz)rδ , (4)

where N is a positive integer and rδ is an integer.

Theorem 2.2. If f(z) =
∏
δ|N

η(δz)rδ is an eta-quotient such that

k =
1

2

∑
δ|N

rδ ∈ Z (5)

∑
δ|N

δrδ ≡ 0 (mod 24) and (6)

∑
δ|N

N

δ
rδ ≡ 0 (mod 24). (7)

Then

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z), (8)

for every

[
a b
c d

]
∈ Γ0(N). Here

χ(d) :=

(
(−1)k

∏
δ|N δrδ

d

)
. (9)

Let f be an eta-quotient satisfying the conditions of Theorem 2.2 and if f is
also holomorphic at all the cusps of Γ0(N), then f ∈ Mk(Γ0(N), χ). To verify
the holomorphicity at cusps of f(z) it suffices to check that the orders at the
cusps are non-negative. The necessary criterion for determining orders of an
eta-quotient at cusps is the following:

Theorem 2.3. Let c, d, and N are positive integers with d | N and gcd(c, d) = 1.
If f(z) is an eta-quotient satisfying the conditions of Theorem 2.2 for N , then
the order of vanishing of f(z) at the cusp c

d is

N

24

∑
δ|N

gcd(d, δ)2rδ

gcd(d, N
d )dδ

. (10)
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The following definitions of Hecke operators play important role in proving the
main results.

Definition 2.4. Let m be a positive integer and

f(z) =

∞∑
n=0

a(n)qn ∈ Mk(Γ0(N), χ).

The Hecke operator Tm acts on f(z) by

f(z) | Tm :=

∞∑
n=0

( ∑
d|gcd(n,m)

χ(d)dk−1a
(nm
d2

))
qn. (11)

In particular, if m = p is a prime, then

f(z) | Tp :=

∞∑
n=0

(
a(pn) + χ(p)pk−1a

(
n

p

))
qn. (12)

Definition 2.5. A modular form f(z) ∈ Mk(Γ0(N), χ) is called a Hecke eigen-
form if for every m ≥ 2 there exist a complex number λ(m) for which

f(z) | Tm = λ(m)f(z). (13)

Theorem 2.6. Let A denote the subset of integer weight modular forms in
Mk(Γ0(N), χ) whose Fourier coefficients are in Ok, the ring of algebraic integers
in a number field K. Suppose M ⊂ Ok is an ideal. If f(z) ∈ A has a Fourier
expansion

f(z) =

∞∑
n=0

a(n)qn, (14)

then there is a constant α > 0 such that

#{n ≤ X : a(n) ̸≡ 0 (mod M)} = O
(

X

(logX)α

)
. (15)

Which yields

lim
x→∞

#{0 < n ≤ X : a(n) ≡ 0 (mod M)}
X

= 1. (16)

Proposition 2.7. Suppose that f(z) =
∑∞

n=1 a(n)q
n ∈ Sk (Γ0(N), χ) has coef-

ficients in Ok, M is a positive integer, and k > 1. Then a positive proportion of
the primes p ≡ −1 (mod MN ) have the property that

f(z) | Tp ≡ 0 (mod MOk).

Theorem 2.8. Let n be a non-negative integer and k be a positive integer. Let
χ be a quadratic Dirichlet character of conductor 9 ·2n. There is an integer c ≥ 0
such that for every f(z) ∈ M (Γ0(9 · 2n), χ) ∩ Z[[q]] and every t ≥ 0

f(z) | Tp1 | Tp2 · · · | Tpc+t ≡ 0 (mod 2t).
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Lemma 2.9.

1

f4
1

=
f14
4

f14
2 f4

8

+ 4q
f2
4 f

4
8

f10
2

, (17)

f4
1 =

f10
4

f2
2 f

4
8

− 4q
f2
2 f

4
8

f2
4

, (18)

f2
f2
1

=
f4
6 f

6
9

f8
3 f

3
18

+ 2q
f3
6 f

3
9

f7
3

+ 4q2
f2
6 f

3
18

f6
3

. (19)

The identity (17) is 2-dissection of ϕ(q)
2
[7, (1.10.1)] . (19) is obtained from [6].

3. Proof of Theorems

Proof of Theorem 1.1. Suppose ℓ = pa1
1 pa2

2 · · · pam
m , where the primes pi’s are

greater than 3.
Let

Bi(z) =
η(24z)p

ai
i

η(24pai
i z)

≡ 1 (mod pi).

Using Binomial theorem for any positive integers, we obtain

(qk; qk)p
j

∞ ≡ (qpk; qpk)p
j−1

∞ (mod pj).

Therefore

B
pj
i

i (z) =
η(24z)p

ai+j

i

η(24pai
i z)p

j
i

≡ 1 (mod pj+1
i ).

Define

Ci,j,ℓ(z) =

(
η(48z)2η(24ℓz)4

η(24z)4η(48ℓz)2

)
B

pj
i

i (z).

Then

Ci,j,ℓ(z) ≡
η(48z)2η(24ℓz)4

η(24z)4η(48ℓz)2
(mod pj+1

i ). (20)

From identities (1) and (20), we get

Ci,j,ℓ(z) ≡
∞∑

n=0

B̄ℓ(z)q
24n (mod pj+1

i ). (21)

Again let

Ci,j,ℓ(z) =
η(24z)p

ai+j

i −4η(48z)2η(24ℓz)4

η(24pai
i z)p

j
i η(48ℓz)2

.
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From Theorem 2.2, Ci,j,ℓ(z) is an eta-quotient with a positive integer weight
pj
i (p

ai
i −1)

2 . Now we calculate the level of Ci,j,ℓ(z). The level of Ci,j,ℓ(z) is equal to
48ℓu, where m is the smallest positive integer satisfying

48ℓu

[
pai+j
i − 4

24
+

2

48
+

4

24ℓ
− pji

24pai
i

− 2

48ℓ

]
≡ 0 (mod 24).

Equivalently

u× 2ℓ
[
pai+j
i − pj−ai

i − 2
]
≡ 0 (mod 24).

Then u = 12 and hence the level of eta-quotient N = 576ℓ.

To check the holomorphic nature at the cusp c
d , where d | 576ℓ and gcd(c, d) = 1

we use Theorem 2.3. Clearly Ci,j,ℓ(z) is holomorphic at cusp c
d if and only if

(pai+j
i − 4)

gcd(d, 24)2

24
+

gcd(d, 48)2

24
+

gcd(d, 24ℓ)2

6ℓ

−gcd(d, 48ℓ)2

24ℓ
− pj−ai

i

gcd(d, 24pai
i )2

24
≥ 0. (22)

That is

(pai+j
i − 4)

gcd(d, 24)2

gcd(d, 48ℓ)
+ ℓ

gcd(d, 48)2

gcd(d, 48ℓ)2
+ 4

gcd(d, 24ℓ)2

gcd(d, 48ℓ)2

−ℓpj−ai

i

gcd(d, 24pai
i )2

gcd(d, 48ℓ)2
− 1 ≥ 0. (23)

Case(i). When d = {2r13r2 · t · pki : 0 ≤ r1 ≤ 3, 0 ≤ r2 ≤ 2,
t | ℓ but pi ∤ t and 0 ≤ k ≤ ai}.

Therefore

gcd(d, 24)2

gcd(d, 48ℓ)
= 1/t2p2ki ,

gcd(d, 48)2

gcd(d, 48ℓ)2
= 1/t2p2ki ,

gcd(d, 24ℓ)2

gcd(d, 48ℓ)2
= 1,

gcd(d, 24pai
i )2

gcd(d, 48ℓ)2
= 1/t2.

Therefore the left side of equation (23) will become

ℓ

t2

(
pji

(
pai
i

p2ki
− 1

pai
i

)
− 3

pi2k

)
+ 3. (24)

For k = ai, the identity (24) ≥ 0 since 3− 3ℓ
t2p2k

i

≥ 0 as p2ai ≥ ℓ.

For 0 ≤ k ≤ ai, it is clear that
p
ai
i

p2k
i

− 1
p
ai
i

> 0,

pai
i

p2ki
− 1

pai
i

− 1

p2ki
≥ p2ai − p2(ai−1) − pai

pai+2k
=

pai

(
pai

(
1− 1

p2

)
− 1
)

pai+2k
≥ 0,
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since pji

(
1− 1

p2

)
> 1 ∀p.

Therefore (24) is non-negative when p2ai ≥ ℓ.
Case(ii). When d = {2r13r2 · t · pki : 4 ≤ r1 ≤ 6, 0 ≤ r2 ≤ 2, t | ℓ but
pi ∤ t and 0 ≤ k ≤ ai}.

Therefore

gcd(d, 24)2

gcd(d, 48ℓ)
= 1/4t2p2ki ,

gcd(d, 48)2

gcd(d, 48ℓ)2
= 1/t2p2ki ,

gcd(d, 24ℓ)2

gcd(d, 48ℓ)2
= 1/4,

gcd(d, 24pai
i )2

gcd(d, 48ℓ)2
= 1/4t2.

Therefore left side of (23) can be written as

ℓpji
4t2

[
pai
i

p2ki
− 1

pai
i

]
. (25)

Since a ≥ 0, the above identity (25) is non-negative.

Therefore Ci,j,ℓ(z) is holomorphic at every cusp c
d . The character associated

with Ci,j,ℓ(z) is χ(•) =

(
(−1)

p
j
i
(p

ai
i

−1)

2 (24)p
ai+j
i (48)2(24ℓ)4(48ℓ)−2(24p

ai
i )−p

j
i

•

)
. Hence

Ci,j,ℓ(z) ∈ M
p
j
i
(p

ai
i

−1)

2

(Γ0(576ℓ), χ).

Applying Theorem 2.6, the Fourier coefficients of Ci,j,ℓ(z) are almost always di-

visible by M = pji . Therefore using the identity (21), we complete the proof of
Theorem 1.1.

For p > 3 and ℓ = p, Corollary 1.2 directly follows from Theorem 1.1.
□

Proof of Theorem 1.3. From (1), generating function of B̄p(n) is given by

∞∑
n=0

B̄p(n)q
n =

f2
2 f

4
p

f4
1 f

2
2p

. (26)

Let

Ep(z) =
η(24pz)2

η(48pz)
.

Using binomial theorem we have

E 2k

p (z) =
η(24pz)2

k+1

η(48pz)2k
≡ 1 (mod 2k+1).
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Define Fp,k(z) by

Fp,k(z) :=
η(48z)2η(24pz)4

η(24z)4η(48pz)2
E 2k

p (z). (27)

Taking modulo 2k+1 in the above identity, we get

Fp,k(z) ≡
η(48z)2η(24pz)4

η(24z)4η(48pz)2
. (28)

From identities (26) and (28), we obtain

Fp,k(z) ≡
∞∑

n=0

B̄p(n)q
24n (mod 2k+1). (29)

From (27), we have

Fp,k(z) :=
η(48z)2 · η(24pz)2k+1+4

η(24z)4 · η(48pz)2k+2
. (30)

From the Theorem 2.2, if k ≥ 1, Fp,k(z) is an eta-quotient with level N = 192p
and a positive integer weight 2k−1. The cusps of Γ0(192p) are represented by
c
d , where d | 192p and gcd(c, d) = 1. Using Theorem 2.3, we say that Fp,k(z) is
holomorphic at a cusp c

d if and only if

gcd(d, 48)2 · 2
48

+
gcd(d, 24p)2 · (2k+1 + 4)

24p
− gcd(d, 24)2 · 4

24

− gcd(d, 48p)2 · (2k + 2)

48p
≥ 0.

If and only if

K = A · 2p+B · (2k+2 + 23)− C · 8p− (2k + 2) ≥ 0, (31)

where A = gcd(d,48)2

gcd(d,48p)2 , B = gcd(d,24p)2

gcd(d,48p)2 , C = gcd(d,24)2

gcd(d,48p)2 , respectively.

The table given below shows all the possible values of K. Now we find that for
the given condition p ≤ 2k−1, K ≥ 0 for all d | 192p.

d | 192p A B C K
2α3β , 0 ≤ α ≤ 3, β = 0, 1 1 1 1 −6p+ 3 · 2k + 6
2α3βp, 0 ≤ α ≤ 3, β = 0, 1 1

p2 1 1
p2 − 6

p + 3 · 2k + 6

2α3β , 4 ≤ α ≤ 6, β = 0, 1 1 1
4

1
4 0

2α3βp, 4 ≤ α ≤ 6, β = 0, 1 1
p2

1
4

1
4p2 0

Hence Fp,k(z) is holomorphic at a every cusp c
d . The character associated

with Fp,k(z) is χ(•) =
(

(−1)2
k−1

(24)2
k+1

(48)2
k+4p3·2k+6

•

)
. Theorem 2.2 gives that

Fp,k(z) ∈ M2k−1 (Γ0(192p), χ) for all p ≤ 2k−1 where k ≥ 1. And the Fourier
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coefficient of Fp,k(z) are all integers. By Theorem 2.6, the Fourier coefficient of
Fp,k(z) are almost always divisible by 2k. From (26), B̄p(n) is almost always
divisible by 2k, thus completes the proof of Theorem 1.3.

□

Proof of Theorem 1.4. Using identity (18) and (17) in (1), we obtain

∞∑
n=0

B̄ℓ(n)q
n

=
f2
2

f2
2ℓ

(
f14
4

f14
2 f4

8

+ 4q
f2
4 f

4
8

f10
2

)(
f10
4ℓ

f2
2ℓf

4
8ℓ

− 4qℓ
f2
2ℓf

4
8ℓ

f2
4ℓ

)
(32)

=
f2
2

f2
2ℓ

(
f14
4 f10

4ℓ

f14
2 f4

8 f
2
2ℓf

4
8ℓ

+ 4q
f2
4 f

4
8 f

10
4ℓ

f10
2 f2

2ℓf
4
8ℓ

− 4qℓ
f14
4 f2

2ℓf
4
8ℓ

f14
2 f4

8 f
2
4ℓ

− 16qℓ+1 f
2
4 f

4
8 f

2
2ℓf

4
8ℓ

f10
2 f2

4ℓ

)
.

For ℓ ≡ 3 (mod 4), we have

∞∑
n=0

B̄ℓ(2n+ 1)qn = 4
f2
2 f

4
4 f

10
2ℓ

f8
1 f

4
ℓ f

4
4ℓ

− 4q
ℓ−1
2

f14
2 f4

4ℓ

f12
1 f4

4 f
2
2ℓ

. (33)

On employing binomial theorem, we get
∞∑

n=0

B̄ℓ(2n+ 1)qn ≡ 4f6
2 − 4q

ℓ−1
2 f6

2ℓ (mod 16). (34)

Extracting coefficient of q2n, we get
∞∑

n=0

B̄ℓ(4n+ 1)qn ≡ 4f6
1 (mod 16). (35)

Which implies,
∞∑

n=0

B̄ℓ(4n+ 1)q4n+1 ≡ 4 η(4z)6 (mod 16). (36)

Using Theorem 2.2, we get η(4z)6 ∈ M3

(
Γ0(16),

(−1
d

))
. Therefore η(4z)6 has

the Fourier series expansion

η(4z)6 = q − 6q5 + 9q9 + 10q13 − 30q17 + · · · =
∞∑

n=1

a(n)qn.

a(n) = 0 for n ̸≡ 1 (mod 4), and for all n ≥ 0, we have

B̄ℓ(4n+ 1) ≡ 4a(4n+ 1) (mod 16). (37)

From [9] it is clear that η(4z)6 is a Hecke eigenform. Also note that a(n) = 0 if
n ̸≡ 1 (mod 4) and for all n ≥ 0. From the definitions 2.4 and 2.5, we have

η(4z)6 | Tp :=

∞∑
n=1

(
a(pn) +

(
−1

p

)
p2a

(
n

p

))
qn = λ(p)a(n). (38)
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Setting n = 1 and noting that a(1) = 1, we readily obtain a(p) = λ(p). Since
a(p) = 0 for all p ̸≡ 1 (mod 4), we have λ(p) = 0. Then, we obtain

a(pn) +

(
−1

p

)
p2a

(
n

p

)
= 0. (39)

Now, consider p ∤ n. Then from the identity (39), we get

a
(
p2n+ pr

)
= 0. (40)

For p | n, from identity (39), we obtain

a
(
p2n
)
= −

(
−1

p

)
p2 a(n). (41)

On replacing n by 4n− pr + 1 in (40), we obtain

a
(
4p2n+ p2 + pr

(
1− p2

))
= 0. (42)

Using (37) in (42), we obtain

B̄ℓ

(
4p2n+ p2 + pr

(
1− p2

))
≡ 0 (mod 16). (43)

Again applying (37) in (41) with n replaced by 4n+ 1, we obtain

B̄ℓ

(
4p2n+ p2

)
≡ −

(
−1

p

)
p2B̄ℓ (4n+ 1) (mod 16). (44)

Since gcd
(

1−p2

4 , p
)
= 1, if r runs over a residue system excluding the multiples

of p, then so does
(1−p2)r

4 . Thus for s ̸≡ 0 (mod p), we can rewrite (43) as

B̄ℓ

(
4p2n+ p2 + 4ps

)
≡ 0 (mod 16). (45)

Suppose pi ≥ 5 and pi ̸≡ 1 (mod 4),then

B̄ℓ

(
4p21p

2
2 · · · p2kn+ p21p

2
2 · · · p2k

)
(46)

= B̄ℓ

(
4p21

(
p22 · · · p2kn+

p22 · · · p2k − 1

4

)
+ p21

)
.

≡ −
(
−1

p1

)
p21 B̄ℓ

(
4

(
p22 · · · p2kn+

p22 · · · p2k − 1

4

)
+ 1

)
(mod 16).

= −
(
−1

p1

)
p21 B̄ℓ

(
4p22 · · · p2kn+ p22 · · · p2k

)
...

≡ (−1)k
(
−1

p1

)
· · ·
(
−1

pk

)
p21 · · · p2k B̄ℓ (4n+ 1) (mod 16) (47)

Consider s ̸≡ 0 (mod pk+1), then identities (45) and (46) implies

B̄ℓ

(
4p21p

2
2 · · · p2kp2k+1n+ p21p

2
2 · · · p2kpk+1(pk+1 + 4s)

)
≡ 0 (mod 16). (48)

This completes the proof of Theorem 1.4. □
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Proof of Theorem 1.5. From (1), we obtain

∞∑
n=0

B̄3ℓ(n)q
n =

f2
2 f

4
3ℓ

f4
1 f

2
6ℓ

. (49)

Using (19) in (49), we obtain

∞∑
n=0

B̄3ℓ(n)q
n =

f4
3ℓ

f2
6ℓ

(
f4
6 f

6
9

f8
3 f

3
18

+ 2q
f3
6 f

3
9

f7
3

+ 4q2
f2
6 f

3
18

f6
3

)2

. (50)

Extracting coefficient of q3n+1, we obtain
∞∑

n=0

B̄3ℓ(n)q
n = 4

f4
ℓ

f2
2ℓ

(
f7
2 f

9
3

f15
1 f3

6

)
. (51)

Applying Binomial theorem, we obtain
∞∑

n=0

B̄3ℓ(3n+ 1)qn ≡ 4
f3
3

f1
(mod 8). (52)

Therefore
∞∑

n=0

B̄3ℓ(3n+ 1)q3n+1 ≡ 4
η(9z)3

η(3z)
. (53)

Define

A(z) =
η(9z)3

η(3z)
. (54)

From Theorem 2.2 and Theorem 2.3, A(z) is a modular form with weight k = 1,
level N = 9 and character χ(d) =

(−243
d

)
. Hence we have the Fourier series

expansion

η(9z)3

η(3z)
= q + q4 + 2q7 + 2q13 + q16 + ... =

∞∑
n=1

a(n)qn. (55)

Since there is no constant term in the expansion, A(z) is a cusp form. From (53)
and (55), we obtain

B̄3ℓ(3n+ 1) ≡ 4 · a(3n+ 1) (mod 8). (56)

From Proposition 2.7, for p ≡ −1 (mod 18) A(z) satisfies

A(z) | Tp ≡ 0 (mod 2). (57)

Thus
∞∑

n=0

(
a(pn) + χ(p)pk−1a

(
n

p

))
qn ≡ 0 (mod 2). (58)
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Hence

a(pn) ≡ a

(
n

p

)
(mod 2). (59)

Replacing n by pn+ r where p ∤ r in (59), we obtain

a(p2n+ pr) ≡ 0 (mod 2), since a

(
pn+ r

p

)
= 0. (60)

Again, replacing n by pn in (59), we obtain

a
(
p2n
)
≡ a(n) (mod 2). (61)

Also replacing n by 3n− pr + 1 in (60), we obtain

a
(
3p2n+ p2 + pr

(
1− p2

))
≡ 0 (mod 2). (62)

Using (56) in (62), we obtain

B̄3ℓ

(
3p2n+ p2 + pr

(
1− p2

))
≡ 0 (mod 8). (63)

Again using (56) in (61) with n replaced by 3n+ 1, we obtain

B̄3ℓ

(
3p2n+ p2

)
≡ B̄3ℓ (3n+ 1) (mod 8). (64)

Since p ≡ −1 (mod 18), r
(
1− p2

)
= 3s, where s ̸≡ 0 (mod p) We can rewrite

(63) as

B̄3ℓ

(
3p2n+ p2 + 3ps

)
≡ 0 (mod 8). (65)

For primes pi ≥ 17, pi ≡ 17 (mod 18), also we have

3p21p
2
2 · · · p2kn+ p21p

2
2 · · · p2k = 3p21

(
p22 · · · p2kn+

p22 · · · p2k − 1

3

)
+ p21.

Now applying (64) repeatedly, we obtain

B̄3ℓ

(
3p21p

2
2 · · · p2kn+ p21p

2
2 · · · p2k

)
≡ B̄3ℓ (3n+ 1) (mod 8). (66)

Consider s ̸≡ 0 (mod pk+1), then identities (65) and (66) gives

B̄3ℓ

(
3p21p

2
2 · · · p2kp2k+1n+ p21p

2
2 · · · p2kpk+1(pk+1 + 3s)

)
≡ 0 (mod 8). (67)

This completes the proof of Theorem 1.5.

□

Proof of Theorem 1.6. Taking p = 3 in (29), we have

F3,k(z) ≡
∞∑

n=0

B̄3(n)q
24n (mod 2k+1).

This implies

F3,k(z) :=

∞∑
n=0

A(n)qn ≡
∞∑

n=0

B̄3

( n

24

)
qn (mod 2k+1). (68)
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We have F3,k(z) ∈ M2k−1

(
Γ0(9 · 26), χ

)
. Using Theorem 2.8, we get that there

is an integer s ≥ 0 such that for any t ≥ 1,

F3,k(z) | Tp1
| Tp2

· · · | Tps+t
≡ 0 (mod 2t)

where p1, p2, · · · ps+t are coprime to 6. From the definition of Hecke operators,
if p1, p2, · · · ps+t are distinct primes which are coprime to n. Then

A (p1 · · · ps+t · n) ≡ 0 (mod 2t). (69)

From identities (68) and (69), we complete the proof of Theorem 1.6. □
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