• Title/Summary/Keyword: refractive index change

Search Result 187, Processing Time 0.028 seconds

A Study on the Efficiency Effects of Capping Layer on the Top Emission Organic Light Emitting Diode (전면 유기발광 다이오드 기능층 캐핑레이어 적용에 따른 효율상승에 관한 연구)

  • Lee, DongWoon;Cho, Eou Sik;Jeon, Yongmin;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Top emission organic light-emitting diode (TEOLED) is commonly used because of high efficiency and good color purity than bottom - emission organic light-emitting device (BEOLED). Unlike BEOLED, TEOLED contain semitransparent metal cathode and capping layer. Because there are many characteristics to consider just simple thickness change, optimizing organic thickness of TEOLED for microcavity is difficult. So, in this study, we optimized Device capping layer at unoptimized micro-cavity structure TEOLED device. And we compare only capping layer with unoptimized microcavity structure can overcome optimized micro-cavity structure device. We used previous our optimized micro-cavity structure to compare each other. As a result, it has been found that the efficiency can be obtained almost the same or higher only capping layer, which is stacked on top of the device and controls only the thickness and refractive index, without complicated structural calculations. This means that higher efficiencies can be obtained more easily in laboratories with limited organic materials or when optimizing new structures etc.

Optical and Electrical Characteristics of Fluorocarbon Films Deposited in a High-Density C4F8 Plasma (고밀도 C4F8 플라즈마에서 증착된 불화탄소막의 광학적 및 전기적 특성)

  • Kwon, Hyeokkyu;You, Sanghyun;Kim, Jun-Hyun;Kim, Chang-Koo
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.254-259
    • /
    • 2021
  • Optical and electrical characteristics of the fluorocarbon films deposited in a high-density C4F8 plasma under various source powers and pressures were investigated. The F/C ratio of the fluorocarbon film deposited in a high-density C4F8 plasma increased with increasing source power and decreasing pressure due to two-step deposition mechanism. The change in the F/C ratio of the film directly affected the optical and electrical characteristics of the fluorocarbon films deposited in a high-density C4F8 plasma. The refractive index of the fluorocarbon film increased with decreasing source power and increasing pressure contrary to the dependence of the film's F/C ratio on the source power and pressure. This was because the increase in the F/C ratio suppressed electronic polarization and weakened the network structures of the film. The resistivity of the fluorocarbon film showed the same behavior as its F/C ratio. In other words, the resistivity increased with increasing source power and decreasing pressure, resulting from stronger repellence of electrons at higher F/C ratios. This work offers the feasibility of the use of the fluorocarbon films deposited in a high-density C4F8 plasma as an alternative to low dielectric constant materials because the optical and electrical properties of the fluorocarbon film can be directly controlled by its F/C ratio.

Efficient Humidity Color Sensor Based on a Photonic Crystal with a Metal-Organic Framework (금속-유기 구조체를 이용한 포토닉 크리스탈 기반의 효율적인 습도 컬러 센서)

  • Kim, Jun Yong;Lee, Sung Hak;Do, Yun Seon
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.6
    • /
    • pp.268-274
    • /
    • 2018
  • In this study we suggest a humidity-sensitive color sensor using a one-dimensional photonic crystal and Hong Kong University of Science and Technology-1 (HKUST-1), which is a metal-organic framework (MOF) substance. One-dimensional photonic crystals have a photonic band gap, due to a periodic refractive-index change, and block and reflect light components in a specific wavelength band. The refractive index of HKUST-1 differs in dry and humid environments. Herein we designed a sensor using the presence of the photonic band gap, with FDTD simulation. As a result of optical analysis, the color conversion of the reflected light was superior to the color conversion of the transmitted light. When the center wavelength of the photonic band gap was 550 nm, the maximum peak value of the wet environment increased by a factor of about 9.5 compared to the dry environment, and the color conversion from achromatic to green was excellent as a sensor. The results of this study suggest the application of MOF materials to moisture sensors, and the nanostructure design of MOF materials will expand the applications to industrial devices.

Properties of Silicon Nitride Deposited by LF-PECVD with Various Thicknesses and Gas Ratios (가스비와 두께 가변에 따른 실리콘질화막의 특성)

  • Park, Je-Jun;Kim, Jin-Kuk;Lee, Hi-Deok;Kang, Gi-Hwan;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.154-157
    • /
    • 2011
  • Hydrogenated silicon nitride deposited by LF-PECVD is commonly used for anti-reflection coating and passivation in silicon solar cell fabrication. The deposition of the optimized silicon nitride on the surface is elemental in crystalline silicon solar cell. In this work, the carrier lifetimes were measured while the thicknesses of $SiN_x$ were changed from 700 ${\AA}$ to 1150 ${\AA}$ with the gas flow of $SiH_4$ as 40 sccm and $NH_3$ as 120 sccm,. The carrier lifetime enhanced as the thickness of $SiN_x$ increased due to improved passivation effect. To study the characteristics of $SiN_x$ with various gas ratios, the gas flow of $NH_3$ was changed from 40 sccm to 200 sccm with intervals of 40 sccm. The thickness of $SiN_x$ was fixed as 1000 ${\AA}$ and the gas flow of $SiH_4$ as 40 sccm. The refractive index of SiNx and the carrier lifetime were measured before and after heat treating at $650^{\circ}C$ to investigate their change by the firing process in solar cell fabrication. The index of refraction of SiNx decreased as the gas ratios increased and the longest carrier lifetime was measured with the gas ratio $NH_3/SiH_4$ of 3.

  • PDF

Highly Sensitive Integrated Photonic Temperature Sensor Exploiting a Polymeric Microring Resonator (폴리머 마이크로링 공진기를 이용한 고감도 집적광학형 온도센서)

  • Lee, Hak-Soon;Kim, Gun-Duk;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.224-228
    • /
    • 2008
  • A highly sensitive integrated photonic temperature sensor was proposed and developed incorporating a polymeric microring resonator. The change in the ambient temperature was estimated by observing the shift in the resonant wavelength of the resonator induced via the thermooptic effect. For the purpose of enhancing its sensitivity, the sensor was built by implementing a polymeric resonator exhibiting a high thermooptic coefficient on a silicon substrate with a small coefficient of thermal expansion. For the range of from $20^{\circ}C$ to $30^{\circ}C$ near the room temperature, the fabricated sensor yielded a sensitivity of as high as 165 ${\pm}/^{\circ}C$ and a resolution of better than $0.1^{\circ}C$. And its performance was found to be hardly affected by the variation in the refractive index of the target analyte, which was applied to the surface of the sensor. It is hence expected that the sensor could be integrated with other refractormetric optical sensors, thereby compensating for the fatal error caused by the change in the ambient temperature.

Changes of Body Balance on Static Posture According to Types of Induced Ametropia (정적자세에서 유도된 비정시의 유형에 따른 신체균형의 변화)

  • Kim, Sang-Yeob;Moon, Byeong-Yeon;Cho, Hyun Gug
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.2
    • /
    • pp.239-246
    • /
    • 2014
  • Purpose: This study was performed to investigate the effect of induced ametropia on static posture for body balance. Methods: Twenty subjects (10 males, 10 females) of average age $23.4{pm}2.70$ years were participated and ametropia(binocular myopia; BM, simple myopic anisometropia; SMA, binocular hyperopia; BH, and simple hyperopic anisometropia; SHA) were induced with ${pm}0.50D$, ${\pm}1.00D$, ${\pm}1.50D$, ${\pm}2.00D$, ${\pm}3.00D$, ${\pm}4.00D$, ${\pm}5.00D$, respectively. General stability (ST), weight distribution index (WDI), and fall risk index (FI) were measured using TETRAX the biofeedback systems. Each index of the body balance was evaluated for 32 seconds in each ametropic condition and those value was compared with the value in fully corrected condition. Results: The ST showed significant increase from +0.50 D under condition of BM, from +1.00 D under condition of SMA, from -1.00 D under condition of BH, and from -1.50 D under condition of SHA compared with under condition of fully corrected condition, respectively. The FI showed significant increases from +4.00 D under condition of BM, from -1.00 D under condition of BH, and from -1.50 D under condition of SHA. The WDI show no change in all ametropia condition. Conclusions: Whatever ametropia is, uncorrected refractive error could reduce the general stability of body balance and increase the falling risk.

Sensitivity Analysis of Volcanic Ash Inherent Optical Properties to the Remote Sensed Radiation (화산재입자의 고유 광학특성이 원격탐사 복사량에 미치는 민감도 분석)

  • Lee, Kwon-Ho;Jang, Eun-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.47-59
    • /
    • 2014
  • Volcanic ash (VA) can be estimated by remote sensing sensors through their spectral signatures determined by the inherent optical property (IOP) including complex refractive index and the scattering properties. Until now, a very limited range of VA refractive indices has been reported and the VA from each volcanic eruption has a different composition. To improve the robustness of VA remote sensing, there is a need to understanding of VA - radiation interactions. In this study, we calculated extinction coefficient, scattering phase function, asymmetry factor, and single scattering albedo which show different values between andesite and pumice. Then, IOPs were used to analyze the relationship between theoretical remote sensed radiation calculated by radiative transfer model under various aerosol optical thickness (${\tau}$) and sun-sensor geometries and characteristics of VA. It was found that the mean rate of change of radiance at top of atmosphere versus ${\tau}$ is six times larger than in radiance values at 0.55 ${\mu}m$. At the surface, positive correlation dominates when ${\tau}$ <1, but negative correlation dominates when ${\tau}$ >1. However, radiance differences between andesite and pumice at 11 ${\mu}m$ are very small. These differences between two VA types are expressed as the polynomial regression functions and that increase as VA optical thickness increases. Finally, these results would allow VA to be better characterized by remote sensing sensors.

A Study on the Optimization of the SiNx:H Film for Crystalline Silicon Sloar Cells (결정질 실리콘 태양전지용 SiNx:H 박막 특성의 최적화 연구)

  • Lee, Kyung-Dong;Kim, Young-Do;Dahiwale, Shailendra S.;Boo, Hyun-Pil;Park, Sung-Eun;Tark, Sung-Ju;Kim, Dong-Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The Hydrogenated silicon nitride (SiNx:H) using plasma enhanced chemical vapor deposition is widely used in photovoltaic industry as an antireflection coating and passivation layer. In the high temperature firing process, the $SiN_x:H$ film should not change the properties for its use as high quality surface layer in crystalline silicon solar cells. Initially PECVD-$SiN_x:H$ film trends were investigated by varying the deposition parameters (temperature, electrode gap, RF power, gas flow rate etc.) to optimize the process parameter conditions. Then by varying gas ratios ($NH_3/SiH_4$), the hydrogenated silicon nitride films were analyzed for its optical, electrical, chemical and surface passivation properties. The $SiN_x:H$ films of refractive indices 1.90~2.20 were obtained. The film deposited with the gas ratio of 3.6 (Refractive index=1.98) showed the best properties in after firing process condition. The single crystalline silicon solar cells fabricated according to optimized gas ratio (R=3.6) condition on large area substrate of size $156{\times}156mm$ (Pseudo square) was found to have the conversion efficiency as high as 17.2%. Optimized hydrogenated silicon nitride surface layer and high efficiency crystalline silicon solar cells fabrication sequence has also been explained in this study.

Optical and Electrical Properties of ZnO Hybrid Structure Grown on Glass Substrate by Metal Organic Chemical Vapor Deposition (유기금속화학증착법으로 유리기판 위에 성장된 산화아연 하이브리드 구조의 광학적 전기적 특성)

  • Kim, Dae-Sik;Kang, Byung Hoon;Lee, Chang-Min;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.543-549
    • /
    • 2014
  • A zinc oxide (ZnO) hybrid structure was successfully fabricated on a glass substrate by metal organic chemical vapor deposition (MOCVD). In-situ growth of a multi-dimensional ZnO hybrid structure was achieved by adjusting the growth temperature to determine the morphologies of either film or nanorods without any catalysts such as Au, Cu, Co, or Sn. The ZnO hybrid structure was composed of one-dimensional (1D) nanorods grown continuously on the two-dimensional (2D) ZnO film. The ZnO film of 2D mode was grown at a relatively low temperature, whereas the ZnO nanorods of 1D mode were grown at a higher temperature. The change of the morphologies of these materials led to improvements of the electrical and optical properties. The ZnO hybrid structure was characterized using various analytical tools. Scanning electron microscopy (SEM) was used to determine the surface morphology of the nanorods, which had grown well on the thin film. The structural characteristics of the polycrystalline ZnO hybrid grown on amorphous glass substrate were investigated by X-ray diffraction (XRD). Hall-effect measurement and a four-point probe were used to characterize the electrical properties. The hybrid structure was shown to be very effective at improving the electrical and the optical properties, decreasing the sheet resistance and the reflectance, and increasing the transmittance via refractive index (RI) engineering. The ZnO hybrid structure grown by MOCVD is very promising for opto-electronic devices as Photoconductive UV Detectors, anti-reflection coatings (ARC), and transparent conductive oxides (TCO).

Physicochemical Changes in Pork Boston Butts by Different Cooking Methods (가열조리방법에 따른 돼지고기 목심의 이화학적 특성 변화)

  • Yang, Jong-Beom;Ko, Myung-Soo
    • Food Science and Preservation
    • /
    • v.17 no.3
    • /
    • pp.351-357
    • /
    • 2010
  • To decrease the intake of animal fat and cholesterol, changes in the physico-chemical characteristics of pork Boston butts cooked by different methods (boiling, steaming, baking, and frying) were investigated. Cooking weight loss and the drain rates of moisture, lipids, and cholesterol were highest during frying. The pH value increased during all cooking processes tested. The refractive index of meat fat increased markedly upon frying. The hardness, gumminess, and chewiness of meat were notably increased by frying. Springiness was not significantly affected by any cooking process, and cohesiveness was slightly increased by all cooking methods evaluated. The CIE $L^*$ (lightness) value was markedly increased upon steaming, and the CIE $a^*$ (redness) value decreased notably with boiling or steaming. The CIE $b^*$ (yellowness) value decreased slightly with either boiling or steaming, and was slightly increased when baking or frying was used. The fatty acid composition did not significantly change after cooking, except when meat was fried.