Browse > Article
http://dx.doi.org/10.7780/kjrs.2014.30.1.5

Sensitivity Analysis of Volcanic Ash Inherent Optical Properties to the Remote Sensed Radiation  

Lee, Kwon-Ho (Department of Geoinformatics Engineering, Kyungil University)
Jang, Eun-Suk (Faculty of Engineering, Hanzhong University)
Publication Information
Korean Journal of Remote Sensing / v.30, no.1, 2014 , pp. 47-59 More about this Journal
Abstract
Volcanic ash (VA) can be estimated by remote sensing sensors through their spectral signatures determined by the inherent optical property (IOP) including complex refractive index and the scattering properties. Until now, a very limited range of VA refractive indices has been reported and the VA from each volcanic eruption has a different composition. To improve the robustness of VA remote sensing, there is a need to understanding of VA - radiation interactions. In this study, we calculated extinction coefficient, scattering phase function, asymmetry factor, and single scattering albedo which show different values between andesite and pumice. Then, IOPs were used to analyze the relationship between theoretical remote sensed radiation calculated by radiative transfer model under various aerosol optical thickness (${\tau}$) and sun-sensor geometries and characteristics of VA. It was found that the mean rate of change of radiance at top of atmosphere versus ${\tau}$ is six times larger than in radiance values at 0.55 ${\mu}m$. At the surface, positive correlation dominates when ${\tau}$ <1, but negative correlation dominates when ${\tau}$ >1. However, radiance differences between andesite and pumice at 11 ${\mu}m$ are very small. These differences between two VA types are expressed as the polynomial regression functions and that increase as VA optical thickness increases. Finally, these results would allow VA to be better characterized by remote sensing sensors.
Keywords
Remote sensing; volcanic ash; inherent optical property; radiative transfer model;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Bohren, C.F., and D. Huffman, 1983. Absorption and scattering of light by small particles, Wiley, New York.
2 Campanelli, M., V. Estelles, T. Smyth, C. Tomasi, M.P. Martinez-Lozano, B. Claxton, Nakajima, T.,Campanelli, M. Estelles, V. Smyth, T. Tomasi, C. Martinez-Lozano, MP; Claxton, B. Muller, P. Pappalardo, G. Pietruczuk, A. Shanklin, J. Colwell, S; Wrench, C. Lupi, A. Mazzola, M. Lanconelli, C. Vitale, V. Congeduti, F. Dionisi, D. Cardillo, F. Cacciani, M. Casasanta, G. Nakajima, T., 2012. Monitoring of Eyjafjallajokull volcanic aerosol by the new European Skynet Radiometers(ESR) network, Atmos. Environ., 48: 33-45, 10.1016/j.atmosenv.2011.09.070.   DOI   ScienceOn
3 Derimian, Y., O. Dubovik, D. Tanré, P. Goloub, T. Lapyonok, and A. Mortier, 2012. Optical properties and radiative forcing of the Eyjafjallajökull volcanic ash layer observed over Lille, France, in 2010, J. Geophys. Res., 117: D00U25, doi:10.1029/2011JD016815.   DOI
4 Egan, W.G., T. Hilgeman, and K. Pang, 1975. Ultraviolet complex refractive index of martian dusts: laboratory measurements of terrestrial analogs, ICARUS, 25: 344-355.   DOI   ScienceOn
5 Ellrod, G.P., B.H. Connell, and D.W. Hillger, 2003. Improved detection of airborne volcanic ash using multi-spectral infrared satellite data. J. Geophys. Res., 108(D12), doi:10.1029/2002JD 002802.   DOI
6 Francis, P.N., M.C. Cooke, and Saunders, R.W., 2012. Retrieval of physical properties of volcanic ash using Meteosat: A case study from the 2010 Eyjafjallajull eruption, J. Geophys. Res., 117: D00U09, doi:10.1029/2011JD016788.   DOI
7 Lee, D.H., K.H. Lee, and Y.J. Kim, 2006b. Atmospheric aerosol detection and its removal for satellite data, Korean J. of Remote Sensing, 22(5): 1-5.   DOI
8 Gasteiger, J., S. GroB, V. Freudenthaler, and M. Wiegner, 2011. Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements, Atmos. Chem. Phys., 11: 2209-2223, doi:10.5194/acp-11-2209-2011.   DOI
9 Lee, D.H., K.H. Lee, and Y.J. Kim, 2006a. Application of MODIS Aerosol Data for Aerosol Type Classification, Korean J. of Remote Sensing, 22(6): 495-505 (in Korean with English abstract).   과학기술학회마을   DOI
10 Lee, K.H. and Y.J. Kim, 2008. Sensitivity of COMS/GOCI measured top-of-atmosphere reflectances to atmospheric aerosol properties, Korean J. of Remote Sensing, 24(6): 559-569 (in Korean with English abstract).   과학기술학회마을   DOI
11 Lee, K.H., 2013. Role of the scattering phase function in the remote sensing of non-spherical dust aerosols, J. of the Korean Physical Society, 62(6): 966-974.   과학기술학회마을   DOI   ScienceOn
12 Lee, K.H., C.S. Hong, and Y.J. Kim, 2004. Atmospheric Aerosol Monitoring Over Northeast Asia During 2001 from MODIS and TOMS data, Korean J. of Remote Sensing, 20(2): 77-89 (in Korean with English abstract).   과학기술학회마을   DOI
13 Miffre, A., G. David, B. Thomas, P. Rairoux, A.M. Fjaeraa, N.I. Kristiansen, and A. Stohl, 2012. Volcanic aerosol optical properties and phase partitioning behavior after long-range advection characterized by UV-Lidar measurements, Atmos. Environ., 48: 76-84.   DOI   ScienceOn
14 Patterson, E., 1981. Measurement of the imaginary refractive index between 300 and 700nm of Mount St. Helens ash, Science, 211.
15 Patterson, E.M. and C.O. Pollard, 1983. Optical properties of the ash from El Chicho'n volcano, Geophys. Res. Lett., 10(4): 317-320.   DOI
16 Patterson, E.M., 1975. Optical absorption coefficients of soil aerosol particles and volcanic ash between 1 and 16um, The 2nd Conference on Atmospheric Radiation, American Meteorological Society, 177-180.
17 Pollack, J.B., O.B. Toon, and B.N. Khare, 1973. Optical properties of some terrestrial rocks and glasses, Icarus, 19: 372-389.   DOI   ScienceOn
18 Volz, F.E., 1973. Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice and fly ash, Appl. Opt., 12: 564-568.   DOI
19 Prata, A.J, 1989. Observations of volcanic ash clouds in the 10-12-micron window using AVHRR/2 Data, Int. J. Remote Sens., 10: 751-761.   DOI   ScienceOn
20 Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle, 1998. SBDART: A research and teaching software tool for plane parallel radiative transfer in the earth's atmosphere, Bull. Amer. Meteor. Soc., 79: 2101-2114.   DOI
21 Warren, S.G. and Brandt, R.E., 2009. Optical constants of ice from the ultraviolet to the microwave: A revised compilation, J. Geophys. Res., 113(D14), DOI: 10.1029/2007JD009744.   DOI
22 World Meteorological Organization(WMO), 1986. A preliminary cloudless standard atmosphere for radiation computation, WCP-112 -World Climate Research Program, CAS, Radiation Commission of IAMAP, Boulder, Colo., 1986.
23 Mishchenko, M.I., I.V. Geogdzhayev, W.B. Rossow, B. Cairns, B.E. Carlson, A.A. Lacis, L. Liu, and L.D. Travis, 2007. Long-term satellite record reveals likely recent aerosol trend, Science, 315(1543), doi:10.1126/science.1136709.   DOI   ScienceOn