DOI QR코드

DOI QR Code

Optical and Electrical Properties of ZnO Hybrid Structure Grown on Glass Substrate by Metal Organic Chemical Vapor Deposition

유기금속화학증착법으로 유리기판 위에 성장된 산화아연 하이브리드 구조의 광학적 전기적 특성

  • Kim, Dae-Sik (Department of Materials Science & Engineering, Korea University) ;
  • Kang, Byung Hoon (Department of Materials Science & Engineering, Korea University) ;
  • Lee, Chang-Min (Department of Materials Science & Engineering, Korea University) ;
  • Byun, Dongjin (Department of Materials Science & Engineering, Korea University)
  • 김대식 (고려대학교 신소재공학과) ;
  • 강병훈 (고려대학교 신소재공학과) ;
  • 이창민 (고려대학교 신소재공학과) ;
  • 변동진 (고려대학교 신소재공학과)
  • Received : 2014.08.13
  • Accepted : 2014.09.15
  • Published : 2014.10.27

Abstract

A zinc oxide (ZnO) hybrid structure was successfully fabricated on a glass substrate by metal organic chemical vapor deposition (MOCVD). In-situ growth of a multi-dimensional ZnO hybrid structure was achieved by adjusting the growth temperature to determine the morphologies of either film or nanorods without any catalysts such as Au, Cu, Co, or Sn. The ZnO hybrid structure was composed of one-dimensional (1D) nanorods grown continuously on the two-dimensional (2D) ZnO film. The ZnO film of 2D mode was grown at a relatively low temperature, whereas the ZnO nanorods of 1D mode were grown at a higher temperature. The change of the morphologies of these materials led to improvements of the electrical and optical properties. The ZnO hybrid structure was characterized using various analytical tools. Scanning electron microscopy (SEM) was used to determine the surface morphology of the nanorods, which had grown well on the thin film. The structural characteristics of the polycrystalline ZnO hybrid grown on amorphous glass substrate were investigated by X-ray diffraction (XRD). Hall-effect measurement and a four-point probe were used to characterize the electrical properties. The hybrid structure was shown to be very effective at improving the electrical and the optical properties, decreasing the sheet resistance and the reflectance, and increasing the transmittance via refractive index (RI) engineering. The ZnO hybrid structure grown by MOCVD is very promising for opto-electronic devices as Photoconductive UV Detectors, anti-reflection coatings (ARC), and transparent conductive oxides (TCO).

Keywords

References

  1. U. Ozgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do an, V. Avrutin, S. -J. Cho and H. Morkoc, J. Appl. Phys., 98, 041301 (2005). https://doi.org/10.1063/1.1992666
  2. E. Kisi and M. M. Elcombe, Acta Crystallogr., Sect. C: Crust. Struct. Commun., C45, 1867 (1989).
  3. K. Ellmer, J. Phys. D: Appl. Phys., 34, 3097 (2001). https://doi.org/10.1088/0022-3727/34/21/301
  4. P. Erhart, K. Albe, Phys. Rev. B., 73(22), 115207 (2006). https://doi.org/10.1103/PhysRevB.73.115207
  5. M. Law, J. Goldberger, and P. Yang, Annu. Rev. Mater. Res., 34, 83 (2004). https://doi.org/10.1146/annurev.matsci.34.040203.112300
  6. C. Bayram, F. Hosseini Teherani, D. J. Rogers, and M. Razeghi, Appl. Phys. Lett., 93, 081111 (2008). https://doi.org/10.1063/1.2975165
  7. I. -S. Jeong, J. -H. Kim, and S. Im, Appl. Phys. Lett., 83, 2946 (2003). https://doi.org/10.1063/1.1616663
  8. R. S. Mane, W. -J. Lee, C. D. Lokhande, B. W. Cho and S. -H. Han, Curr. Appl. Phys., 8(5), 549 (2008). https://doi.org/10.1016/j.cap.2007.10.001
  9. Y. Ohya, T. Niva, T. Ban, and Y. Takahashi, Jpn. J. Appl. Phys., Part 1 40(1), 297 (2001). https://doi.org/10.1143/JJAP.40.297
  10. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science, 287(5455), 1019 (2000). https://doi.org/10.1126/science.287.5455.1019
  11. T. J. Caruso, C. G. Prober, and J. M. Gwaltney, Clin. Infect. Dis., 45(5), 569 (2007). https://doi.org/10.1086/520031
  12. D. C. Look, J. W. Hemsky, and J. R. Sizelove, Physical Review Letters, 82(12), 2552 (2005).
  13. Z. L. Wang, Mater. Today, 7(6), 26 (2004).
  14. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science, 291(5510), 1947 (2001). https://doi.org/10.1126/science.1058120
  15. D. -S. Kim, D. Lee, J. -H. Lee, and D. Byun, J. Korean Phys. Soc., 64(10), 1524 (2014). https://doi.org/10.3938/jkps.64.1524
  16. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature (London), 409, 66 (2001) https://doi.org/10.1038/35051047
  17. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964). https://doi.org/10.1063/1.1753975
  18. C. C. Wu, D. S. Wuu, P. R. Lin, T. N. Chen and R. H. Horng, Cryst. Growth Des., 9(10), 4555 (2009). https://doi.org/10.1021/cg900557n
  19. S. -S. Park, J. -M. Lee, S. -J. Kim and S. -W. Kim, J. Korean Phys. Soc., 53(1), 183 (2008). https://doi.org/10.3938/jkps.53.183
  20. J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee and S. T. Lee, Chem. Mater., 14, 1216 (2002). https://doi.org/10.1021/cm0107326
  21. M. R. Khanlary, V. Vahedi and A. Reyhani, Molecules, 17(5), 5021 (2012). https://doi.org/10.3390/molecules17055021
  22. F. K. Lotgering, J. Inorg. Nucl. Chem., 9(2), 113 (1959). https://doi.org/10.1016/0022-1902(59)80070-1
  23. J. -Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. -Y. Lin, W. Liu and J. A. Smart, Nat. Photonics, 1, 176 (2007).
  24. D. Bouhafs, A. Moussi, A. Chikouche and J. M. Riz, Sol. Energ. Mat. Sol. C., 52, 79 (1998). https://doi.org/10.1016/S0927-0248(97)00273-0
  25. J. D. Albrecht, P. P. Ruden, S. Limpijumnong, W. R. L. Lamrecht, and K. F. Brennan, J. Appl. Phys., 86, 6864 (1991).