Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.10.543

Optical and Electrical Properties of ZnO Hybrid Structure Grown on Glass Substrate by Metal Organic Chemical Vapor Deposition  

Kim, Dae-Sik (Department of Materials Science & Engineering, Korea University)
Kang, Byung Hoon (Department of Materials Science & Engineering, Korea University)
Lee, Chang-Min (Department of Materials Science & Engineering, Korea University)
Byun, Dongjin (Department of Materials Science & Engineering, Korea University)
Publication Information
Korean Journal of Materials Research / v.24, no.10, 2014 , pp. 543-549 More about this Journal
Abstract
A zinc oxide (ZnO) hybrid structure was successfully fabricated on a glass substrate by metal organic chemical vapor deposition (MOCVD). In-situ growth of a multi-dimensional ZnO hybrid structure was achieved by adjusting the growth temperature to determine the morphologies of either film or nanorods without any catalysts such as Au, Cu, Co, or Sn. The ZnO hybrid structure was composed of one-dimensional (1D) nanorods grown continuously on the two-dimensional (2D) ZnO film. The ZnO film of 2D mode was grown at a relatively low temperature, whereas the ZnO nanorods of 1D mode were grown at a higher temperature. The change of the morphologies of these materials led to improvements of the electrical and optical properties. The ZnO hybrid structure was characterized using various analytical tools. Scanning electron microscopy (SEM) was used to determine the surface morphology of the nanorods, which had grown well on the thin film. The structural characteristics of the polycrystalline ZnO hybrid grown on amorphous glass substrate were investigated by X-ray diffraction (XRD). Hall-effect measurement and a four-point probe were used to characterize the electrical properties. The hybrid structure was shown to be very effective at improving the electrical and the optical properties, decreasing the sheet resistance and the reflectance, and increasing the transmittance via refractive index (RI) engineering. The ZnO hybrid structure grown by MOCVD is very promising for opto-electronic devices as Photoconductive UV Detectors, anti-reflection coatings (ARC), and transparent conductive oxides (TCO).
Keywords
ZnO hybrid; thin film; nanorod; opto-electrical device; MOCVD;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 U. Ozgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do an, V. Avrutin, S. -J. Cho and H. Morkoc, J. Appl. Phys., 98, 041301 (2005).   DOI   ScienceOn
2 M. Law, J. Goldberger, and P. Yang, Annu. Rev. Mater. Res., 34, 83 (2004).   DOI   ScienceOn
3 E. Kisi and M. M. Elcombe, Acta Crystallogr., Sect. C: Crust. Struct. Commun., C45, 1867 (1989).
4 K. Ellmer, J. Phys. D: Appl. Phys., 34, 3097 (2001).   DOI   ScienceOn
5 P. Erhart, K. Albe, Phys. Rev. B., 73(22), 115207 (2006).   DOI
6 I. -S. Jeong, J. -H. Kim, and S. Im, Appl. Phys. Lett., 83, 2946 (2003).   DOI   ScienceOn
7 R. S. Mane, W. -J. Lee, C. D. Lokhande, B. W. Cho and S. -H. Han, Curr. Appl. Phys., 8(5), 549 (2008).   DOI   ScienceOn
8 Y. Ohya, T. Niva, T. Ban, and Y. Takahashi, Jpn. J. Appl. Phys., Part 1 40(1), 297 (2001).   DOI
9 T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science, 287(5455), 1019 (2000).   DOI   ScienceOn
10 T. J. Caruso, C. G. Prober, and J. M. Gwaltney, Clin. Infect. Dis., 45(5), 569 (2007).   DOI   ScienceOn
11 D. C. Look, J. W. Hemsky, and J. R. Sizelove, Physical Review Letters, 82(12), 2552 (2005).
12 Z. L. Wang, Mater. Today, 7(6), 26 (2004).
13 Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science, 291(5510), 1947 (2001).   DOI   ScienceOn
14 D. -S. Kim, D. Lee, J. -H. Lee, and D. Byun, J. Korean Phys. Soc., 64(10), 1524 (2014).   DOI
15 X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature (London), 409, 66 (2001)   DOI   ScienceOn
16 R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964).   DOI
17 C. C. Wu, D. S. Wuu, P. R. Lin, T. N. Chen and R. H. Horng, Cryst. Growth Des., 9(10), 4555 (2009).   DOI   ScienceOn
18 S. -S. Park, J. -M. Lee, S. -J. Kim and S. -W. Kim, J. Korean Phys. Soc., 53(1), 183 (2008).   DOI
19 J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee and S. T. Lee, Chem. Mater., 14, 1216 (2002).   DOI   ScienceOn
20 J. -Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. -Y. Lin, W. Liu and J. A. Smart, Nat. Photonics, 1, 176 (2007).
21 D. Bouhafs, A. Moussi, A. Chikouche and J. M. Riz, Sol. Energ. Mat. Sol. C., 52, 79 (1998).   DOI   ScienceOn
22 J. D. Albrecht, P. P. Ruden, S. Limpijumnong, W. R. L. Lamrecht, and K. F. Brennan, J. Appl. Phys., 86, 6864 (1991).
23 M. R. Khanlary, V. Vahedi and A. Reyhani, Molecules, 17(5), 5021 (2012).   DOI   ScienceOn
24 F. K. Lotgering, J. Inorg. Nucl. Chem., 9(2), 113 (1959).   DOI   ScienceOn
25 C. Bayram, F. Hosseini Teherani, D. J. Rogers, and M. Razeghi, Appl. Phys. Lett., 93, 081111 (2008).   DOI