• Title/Summary/Keyword: reflection-transmission boundary

Search Result 60, Processing Time 0.025 seconds

Investigation of surface-piercing fixed structures with different shapes for Bragg reflection of water waves

  • Ding, Wei-Wei;Zou, Zao-Jian;Wu, Jing-Ping;Huang, Bai-Gang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.819-827
    • /
    • 2019
  • Bragg reflection of water waves by three kinds of surface-piercing fixed structures with rectangular, cosinoidal and triangular shapes is studied. Boundary element method is used to analyze the wave scattering by these structures based on the linear wave theory. Results of reflection and transmission coefficients are validated by comparing with those available in literature. These structures with proper configurations are proved to be effective in attenuating waves by using Bragg reflection, and the triangular structures are found to be the best choices among the structures with same width and same area. Systematic calculations are then carried out for the triangular structures by varying the number, the draft, the width, the gap and the combination of width and gap of the structures to analyze their influences on the characteristics of Bragg reflection. The results are of reference values for design of the structures to attenuate waves based on the Bragg reflection.

Wave Reflection over Doubly-Sinusoidally Varying Topographies (복합정현파형 지형에서의 파랑 반사)

  • 김영택;조용식;이정규
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.189-194
    • /
    • 2001
  • The present study describes the Bragg reflection of monochromatic water waves propagating over a train of doubly-sinusoidally varying topographies. A numerical model based on the boundary element method is firstly verified by calculating reflection and transmission coefficients of waves over a trench. Calculated solutions are compared with those of the eigenfunction expansion method. The model is then used to simulated reflection of monochromatic water waves propagating over doubly-sinusoidally varying bottom topographies. Obtained reflection coefficients are compared with those of available laboratory measurements, those of the eigenfunction expansion method and the extended mild-slope equation. A reasonable agreement is shown.

  • PDF

Numerical Analysis of Hydrodynamic Performance of a Movable Submerged Breakwater (가동식 잠수 방파제의 유체동력학적 성능 수치해석)

  • Koo, Weon-Cheol;Kim, Do-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • Numerical analysis of hydrodynamic performance of a movable submerged breakwater was carried out as an eco-friendly marine structure for coastal and harbor protection. Using boundary elements method with two-dimensional frequency-domain reflection and transmission coefficients and wave forces acting on the submerged flat plate were calculated with various submerged depths and respective motion allowable modes. The movable breakwater was found to be more efficient in wave-blocking than the fixed structure. Variation of reflection coefficients was significantly influenced by vertical motion of the body.

A Hybrid Boundary Integral Equation Model Applied for the Calculation of Normal Incident Waves (혼합경계적분 요소법을 사용한 직교입사파랑의 반사률계산 모델)

  • 서승남;김상익
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.3
    • /
    • pp.170-175
    • /
    • 1991
  • In order to calculate reflection coefficients of surface waves due to underwater obstacles, the hybrid boundary integral equation method is used. Numerical results based on the linear element are verified to the exact solutions for a flat bottom. Reflection coefficient and transmission coefficients for a step are compared to Young's results and the results by EFEM (Kirby et al., 1987), in which reflection coefficients decrease to zero as the periods of incident waves decrease. Reflection coefficients for a sinusiodal hump located on a constant depth increase due to the interaction between humps.

  • PDF

Effect of fractional order on energy ratios at the boundary surface of elastic-piezothermoelastic media

  • Kumar, Rajneesh;Sharma, Poonam
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.157-174
    • /
    • 2017
  • In the present investigation reflection and transmission of plane waves at an elastic half space and piezothermoelastic solid half space with fractional order derivative is discussed. The piezothermoelastic solid half space is assumed to have 6 mm type symmetry and assumed to be loaded with an elastic half space. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence, frequency of incident wave and are influenced by the piezothermoelastic properties of media. The expressions of amplitude ratios and energy ratios are obtained in closed form. The energy ratios are computed numerically using amplitude ratios for a particular model of graphite and Cadmium Selenide (CdSe). The variations of energy ratios with angle of incidence are shown graphically. The conservation of energy across the interface is verified. Some cases of interest are also deduced from the present investigation.

Reflection and Transmission of Electromagnetic Waves at the Oscillating Dielectric Plane Surface(Transverse Magnetic Wave) (진동하는 유전체면에서 전자파의 반사와 투과(TM파에 대하여))

  • 구연건;이정수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.6
    • /
    • pp.371-378
    • /
    • 1986
  • In the reflection and transmission of a transverse magnetic wave(TM wave) from a dielectric plane osillating sinusoidally perpendicular to ist surface, one could assume that the boundary moves with a uniform nelocity equal to the instantaneous socillating velodity. According to the extended Lorentz transform, the reflected and the transmitted field are obatained as the function of the dielectric permittivity, the oscillating velocities, and the incident angles. The above results are analyzed graphically.

  • PDF

Reflection and Transmission of Electromagnetic Waves at the Oscillating Dielectric Plane Surface;(Transverse Electric Wave) (진동하는 수전체면에서 전자파의 반사와 투과(TE파에 대하여))

  • 구자건
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.10 no.4
    • /
    • pp.193-200
    • /
    • 1985
  • In the reflection and transmission of a plane wave(TE) from a dielectric plane surface oscillating sinusoidally perpendicular to its surface, one could assume that the boundary moves with a uniform velocity equal to the instantaneous oscillating velocity. The reflected and the transmitted fields are obtained as the function of the incident angles, the dielecri'c permittivity, and the oscillating velocities according to the extended Lorentz transform.

  • PDF

Effect of two-temperature on the energy ratio at the boundary surface of inviscid fluid and piezothermoelastic medium

  • Kumar, Rajneesh;Sharma, Poonam
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.743-752
    • /
    • 2020
  • The phenomenon of reflection and transmission of plane waves at an interface between fluid half space and orthotropic piezothermoelastic solid half-space with two-temperature has been investigated. Energy ratios of various reflected and transmitted waves are computed with the use of amplitude ratios. The law of conservation of energy across the interface has been justified. It is found that the energy ratios are the functions of angle of incidence, frequency of independent wave and depend on the different piezothermoelastic material. A piezothermoelastic material has been considered which is in welded contact with water. Variations of energy ratios corresponding to the reflected waves and transmitted waves are computed and shown graphically for the two different models. A particular reduced case of interest is also discussed.

Wave Transmission Analysis of Beam/Plate Point-Coupled Structures (보/평판 점연성구조의 파동전달해석)

  • 서성훈;홍석윤;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.457-467
    • /
    • 2004
  • Wave Transmission analysis is one of methods for power transmission and reflection coefficients in coupled infinite structures. This paper focuses the wave transmission analysis of point coupled structures among semi-infinite beams and infinite thin plates considering all kinds of waves. It is supposed that the junction through the beams and plates is an identical spot and no point of contact exist except the spot. The boundary conditions are applied at the spot for continuities of 6 DOF displacements and 6 DOF force equilibriums, and then wave fields are obtained in the coupled structures. Since wave components in plate field are simplified using asymptotic expressions of Henkel functions, the displacements and forces at the plate junction can be simply expressed with magnitudes of the wave components. The wave fields according to incident waves gives the power transmission coefficients in beam/plate point coupled structures. For both coupled structures with a beam vertically and obliquely joined to a plate, power transmission analysis is performed and the analysis results are compared and examined.

  • PDF

Permeable Breakwaters Analysis by Using Boundary Element Method (경계요색법(境界要索法)에 의한 투과잠제(透過潛堤)의 해석기법(解析技法))

  • Kim, Nam Hyeong;Takikawa, Kiyoshi;Choi, Han Kuv
    • Journal of Industrial Technology
    • /
    • v.10
    • /
    • pp.69-72
    • /
    • 1990
  • In this paper the numerical method for the study of wave reflection from and transmission through submerged permeable breakwaters using the boundary element method is developed. The numerical analysis technique is based on the wave pressure function instead of velocity potential because it is difficult to define the velocity potential in the each region arising the energy dissipation. Also, the non-linear energy dissipation within the submerged porous structure is simulated by introducing the linear dissipation coefficient and the tag mass coefficient equivalent to the non-linear energy dissipation. For the validity of this analysis technique, the numerical results obtained by the present boundary element method are compared with those obtained by the other computation method. Good agreements are obtained and so the validity of the present numerical analysis technique is proved.

  • PDF