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a b s t r a c t

Bragg reflection of water waves by three kinds of surface-piercing fixed structures with rectangular,
cosinoidal and triangular shapes is studied. Boundary element method is used to analyze the wave
scattering by these structures based on the linear wave theory. Results of reflection and transmission
coefficients are validated by comparing with those available in literature. These structures with proper
configurations are proved to be effective in attenuating waves by using Bragg reflection, and the trian-
gular structures are found to be the best choices among the structures with same width and same area.
Systematic calculations are then carried out for the triangular structures by varying the number, the
draft, the width, the gap and the combination of width and gap of the structures to analyze their in-
fluences on the characteristics of Bragg reflection. The results are of reference values for design of the
structures to attenuate waves based on the Bragg reflection.
© 2019 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The attenuation of water waves is an important research topic in
coastal and ocean engineering. Breakwaters consisting of single or
multiple structures are often constructed to protect engineering
structures or sea shore from wave attack. Compared with a single
structure, multiple structures used as breakwaters may enhance
the effectiveness of wave attenuation under proper geometrical
deployment. If multiple structures are deployed periodically, they
are known as periodical structures. When incident waves impinge
on periodical structures, a resonance of reflection could occur.
Specifically, the primary reflection coefficient would be achieved
under the condition that the wavelength of the normally incident
wave is about twice the periodical length of the periodical struc-
tures, which is defined as the phenomenon of Bragg reflection.

The occurring of Bragg reflection leads to the possibility that the
periodical structures could help attenuating waves effectively.
Based on the Bragg reflection, Mei et al. (1988) suggested a series of

sinusoidal sandbars to protect the drilling platforms in the Ekofisk
of the North Sea from wave attack. Bailard et al. (1990) concluded
that a number of submerged bars based on the Bragg reflectionmay
be an appropriate shore protection method to significantly reduce
the erosion. Bailard et al. (1992) found that the Bragg reflection
submerged bars were capable of providing storm erosion protec-
tion along U.S. Gulf Coast and Atlantic Coast beaches. Tsai and Wen
(2010) indicated that by using the mechanism of Bragg reflection,
the submerged breakwaters were effective to reflect incoming
waves near Mi-Tuo Coast, Taiwan.

So far, Bragg reflection of water waves by submerged structures
with a number of different shapes has been widely investigated.
Most researches focused on the submerged structures with one
kind of shape, such as rectangular shape (Hsu et al. (2003); Wen
and Tsai (2008); Zeng et al. (2017)), sinusoidal or cosinoidal
shape (Cho and Lee (2000); Cho et al. (2004); Shih and Weng
(2016)), trapezoidal shape (Jeon and Cho (2006); Chang and Liou
(2007)), parabolic shape (Liu et al. (2015)) and semi-circular
shape (Liu et al. (2016)). Several kinds of shapes were also
considered simultaneously. Hsu et al. (2002) experimentally and
theoretically analyzed the characteristics of Bragg reflection of
water waves by three kinds of submerged artificial bars with
rectangular, triangular and rectified cosinoidal shapes, respectively.
Tsai et al. (2011) proposed multiply composite artificial bars with
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different shapes, such as rectangular, triangular and rectified si-
nusoidal, in which two kinds of periodical length were considered.
The effective bandwidth of Bragg reflection could be enlarged by
these bars. Liu et al. (2014) analytically investigated the Bragg
reflection of long waves by three kinds of submerged bars with
triangular shape, rectified cosinoidal shape, and idealized trape-
zoidal shape, respectively. Optimal curves for the maximum Bragg
resonance were obtained to help designing these Bragg
breakwaters.

Above researches mainly focused on the Bragg reflection of
water waves by submerged structures on the seabed. However,
these structures can also be arranged piercing the still water sur-
face or under the still water surface. According to the physical
essence of the occurring of Bragg reflection, these structures
enduring incident water waves may also induce the phenomenon
of Bragg reflection. Garnaud and Mei (2010) investigated the wave
scattering and radiation by an array of small heaving buoys that
were attached to power-takeoff devices based on an asymptotic
theory. It was found that the phenomenon of Bragg reflection
significantly reduced the extraction efficiency of wave energy.
Linton (2011) studied the scattering of water waves over periodical
arrays of submerged horizontal circular cylinders in deep water
using the multiple expansion technique. A phase shift in the phe-
nomenon of Bragg reflection was found compared with the stan-
dard Bragg law. Karmakar et al. (2013) analyzed thewave scattering
by multiple vertical flexible membranes using the eigenfunction
expansion method, and found the phenomenon of Bragg reflection
in the wave interaction with two vertical flexible membranes.
Ouyang et al. (2015) investigated the Bragg reflection of water
waves by a series of stationary floating pontoon breakwaters with
rectangular shape based on a boundary discretization technique.
Ding et al. (2018) proposed the multiple composite flexible mem-
branes floating vertically in the water and found that the effective
bandwidth of Bragg reflection could be increased compared with
the traditional multiple flexible membranes.

In the researches above, a number of methods have been uti-
lized in the problem of wave interaction with structures. Mean-
while, the boundary element method is also widely used in the
wave interaction with structures, especially for the complex engi-
neering structures (Teng and Gou (2017)). For example, Dalrymple
and Kirby (1986) proved that the boundary element method was
accurate and effective to investigate the interaction between water
waves and a patch of bottom ripples. Kar et al. (2018) used the
boundary element method to analyze the surface gravity wave
scattering by a pair of trenches. The boundary element method is
quite convenient to deal with complex geometries of structures.
Moreover, many kinds of structures with different shapes can be
easily considered by the boundary element method.

There are only few researches on the Bragg reflection of water
waves arising from surface-piercing fixed structures with different
shapes. In this paper, three surface-piercing fixed structures with
rectangular, cosinoidal and triangular shapes are chosen as typical
examples for the study of Bragg reflection of water waves. Struc-
tures with these three shapes are reasonable choices from the en-
gineering point of view and were analyzed by Hsu et al. (2002) and
Tsai et al. (2011) for the cases of structures fixed on the seabed. The
present study extends the work of Ouyang et al. (2015) in which
only the fixed floating pontoon with rectangular shape was
considered. Meanwhile, the boundary element method is adopted
to conveniently consider the structures with different shapes. Nu-
merical solutions based on the boundary element method are
derived and validated with published results in the literature. The
differences in Bragg reflection induced by the three kinds of
structures with rectangular, cosinoidal and triangular shapes are
analyzed. Characteristics of Bragg reflection are systematically

investigated with the variation of the number, the draft and the
width, the gap and the combination of width and gap of the
triangular structures. This study can provide guidance on design of
surface-piercing fixed structures with different shapes to attenuate
waves when taking advantage of Bragg reflection.

2. Mathematical formulation

As shown in Fig. 1, three kinds of surface-piercing fixed struc-
tures deployed on the still water surface are considered. Each kind
of the structures consists of same structures, whose shapes under
the still water surface are rectangular, cosinoidal and triangular
respectively, with the width W and the draft d. The number of the
structures is N. The gap between every two adjacent structures
keeps the same and is denoted by S. These structures can then be
seen as periodical structures with the periodical length L ¼ Sþ W .

A monochromatic incident wave with frequency u and small
amplitude am approaches the structures from the far field. The
wave scattering problem of the structures is analyzed based on the
linear water wave theory in which the fluid is assumed to be
inviscid and incompressible and the flow is assumed to be irrota-
tional. The seabed is assumed to be uniform and impermeable. The
water depth keeps constant and is denoted by h.

A two dimensional Cartesian coordinate system is defined, with
x-axis pointing horizontally right and z-axis pointing vertically
upward. The origin is set at the still water surface and the center of
the first structure for mathematical convenience.

Under the frame of linear potential theory, the flow in the whole
region can be described by a velocity potential Fðx;z; tÞ, where t is
the time. For the problem considered here, the velocity potential
can be expressed as

Fðx; z; tÞ ¼ Re
n
fðx; zÞe�iut

o
(1)

where Re represents the real part of the quantity, fðx; zÞ is the
spatial velocity potential and i represents the imaginary unit.

The velocity potential of the aforementioned incident wave can
be expressed as

fI ¼ �iamg
u

eikx
cosh kðhþ zÞ

cosh kh
(2)

where g is the gravitational acceleration and k is the wave number
of the incident wave, which is the positive root of the dispersion
equation u2 ¼ gk tanh kh.

The fluid motion is governed by the two-dimensional Laplace
equation 

v2

vx2
þ v2

vz2

!
f ¼ 0 (3)

By combining the linearized kinematic and dynamic free surface
boundary conditions, the linearized free surface boundary condi-
tion is obtained as

vf

vz
� u2

g
f ¼ 0 ; z ¼ 0 (4)

The fixed structures are assumed to be rigid. The boundary
condition on the surface of each structure can be expressed as

Vf,n ¼ 0 (5)

where n represents the unit normal vector.
The impermeable seabed condition is
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vf

vz
¼ 0 ; z ¼ �h: (6)

The Sommerfeld boundary conditions are given as

lim
x/H∞

�
v

vx
±ik
��

f� fI
f

�
¼ 0 (7)

3. Numerical solutions

The boundary element method is used to solve the boundary
value problem formulated above. Two hypothetic boundaries at x ¼
xl and x ¼ xr respectively are introduced to facilitate the numerical
solutions, where xl is located sufficiently far from the first structure,
and xr is located sufficiently far from the last structure. Accordingly,

the whole region is divided into the region 1 (x � xl), the region 2
(xl < x< xr) and the region 3 (x � xr), and the velocity potentials in
the three regions are represented by f1ðx; zÞ, f2ðx; zÞ and f3ðx; zÞ,
respectively.

The velocity potential in the region 1, which fulfills Eq. (7), can
be expressed as

f1ðx; zÞ ¼
h
AIe

ikðx�xlÞ þ Re�ikðx�xlÞ
i cosh kðhþ zÞ

cosh kh
; AI

¼ �iamg
u

eikxl (8)

where R is the complex amplitude of the reflection coefficient and
AI is introduced for expression convenience.

The velocity potential in the region 3, which fulfills Eq. (7), can
be expressed as

Fig. 1. Sketch map of the surface-piercing fixed structures with different shapes.
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f3ðx; zÞ ¼ Teikðx�xrÞcosh kðhþ zÞ
cosh kh

(9)

where T is the complex amplitude of the transmission coefficient.
According to the continuity of pressure and the continuity of

velocity at the two hypothetic boundaries, it has

f2ðx; zÞjx¼xl ¼ f1ðx; zÞjx¼xl (10)

vf2ðx; zÞ
vx

����
x¼xl

¼ vf1ðx; zÞ
vx

����
x¼xl

(11)

f2ðx; zÞjx¼xr ¼ f3ðx; zÞjx¼xr (12)

vf2ðx; zÞ
vx

����
x¼xr

¼ vf3ðx; zÞ
vx

����
x¼xr

(13)

By substituting Eq. (8) into the combination of Eq. (10) and Eq.
(11), the boundary condition at x ¼ xl can be derived as�
f2 þ

1
ik

vf2
vx

�
x¼xl

¼ 2AI
cosh kðhþ zÞ

cosh kh
(14)

By substituting Eq. (9) into the combination of Eq. (12) and Eq.
(13), the boundary condition at x ¼ xr can be derived as�
f2 �

1
ik

vf2
vx

�
x¼xr

¼ 0 (15)

The free surface Green function, which is the fundamental so-
lution to Laplace Eq. (3), is defined as

GðP;QÞ ¼ �ln rðP;QÞ ¼ �1
2
ln
�
ðx� xÞ2 þ ðz� hÞ2

�
(16)

where Pðx; zÞ is the field point, Qðx; hÞ is the source point, and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xÞ2 þ ðz� hÞ2

q
represents the distance between the field

point and the source point.
This kind of Green function is simple and the phenomenon of

irregular frequencies due to numerical discretization is unlikely to
occur. By using Green's theorem, the velocity potential at point P
located in the region 2 (excluding its boundaries) fulfills the
relation

�2pf2ðPÞ ¼
I
C

�
f2ðQÞ vGðP;QÞ

vn
� GðP;QÞ vf2ðQÞ

vn

�
ds (17)

where the direction of definite integration is anticlockwise; the
total boundary C consists of the hypothetic left boundary Cl, the
seabed boundary Cs, the hypothetic right boundary Cr, several still
water surface boundaries Cw and several structure surface bound-
aries Cb.

Based on Eq. (17), the velocity potential at any location in the
region can be represented in terms of the values of the velocity
potential and its normal derivative on the boundaries. When the
point P is located on the boundaries of the region 2, Eq. (17) is
rewritten as

�pf2ðPÞ ¼
I
C

�
f2ðQÞ vGðP;QÞ

vn
� GðP;QÞ vf2ðQÞ

vn

�
ds (18)

In order to numerically obtain the velocity potential on the total
boundaries, all the boundaries are divided into a number of small

elements. The sharp corner of the boundaries of the structures is set
as the endpoints of the adjacent elements. The constant element
model is adopted, and a constant velocity potential exists on each
element. The collocation point and the source point are set at the
midpoint of each element. Although there are more sophisticated
element models, the accuracy of results is about the same as long as
a sufficient number of elements in the constant element model are
used.

By substituting Eqs. (4)e(6), (14) and (15) into Eq. (18) and
discreting the resulting equation, it gives

pfe
2ðPÞ þ

X
Cw

�
hPQ � u2

g
gPQ

�
fe
2ðQÞ þ

X
CbþCs

hPQfe
2ðQÞ þ

X
ClþCr

�
hPQ

� ikgPQ
	
fe
2ðQÞ

¼
X
Cl

2ikAI
cosh kðhþ zÞ

cosh kh
gPQ

(19)

where hPQ ¼ RGQ

vGðP;QÞ
vn dG and gPQ ¼ R

GQ
GðP; QÞdG, which are

introduced for expression convenience; fe
2 represents the velocity

potential on the element e.
The values of hPQ and gPQ can be calculated numerically via

common Gaussian quadrature. Particularly, when the point Q and
the point P overlap, the singularity of Green function occurs and the
values of hPQ and gPQ are explicitly obtained as

hPQ ¼ 0 (20)

gPQ ¼ Dl
2p

�
1þ ln

2
Dl

�
(21)

where Dl represents the length of the element on which Q locates.
Denoting the total number of the elements as M, M linear

algebraic equations similar to Eq. (19) can be established. The ve-
locity potential on each element can then be determined by solving
these equations.

By substituting Eq. (8) into Eq. (10) andmultiplying both sides of
the resulting equation with cosh kðhþ zÞ, it gives

f2ðxl; zÞcosh kðhþ zÞ ¼ ðAI þ RÞ cosh
2 kðhþ zÞ

cosh kh
(22)

Integrating Eq. (22) with respect to z from -h to 0, it follows

R ¼ �AI þ
k

n0 sinh kh

ð0
�h

f2ðxl; zÞcosh kðhþ zÞdz (23)

where n0 ¼ 1
2

�
1þ 2kh

sinh kh

�
.

By substituting Eq. (9) into Eq. (12) andmultiplying both sides of
the resulting equation with cosh kðhþ zÞ, it gives

f2ðxr; zÞcosh kðhþ zÞ ¼ T
cosh2 kðhþ zÞ

cosh kh
(24)

Integrating Eq. (24) with respect to z from -h to 0, it follows

T ¼ k
n0 sinh kh

ð0
�h

f2ðxr ; zÞcosh kðhþ zÞdz (25)

Thus, the reflection and transmission coefficients can be
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calculated as

Kr ¼ jR=AIj (26)

Kt ¼ jT=AIj (27)

4. Results and discussion

The purpose of the present study is to analyze the effectiveness
of wave attenuation through the Bragg reflection induced by the
surface-piercing fixed structures with various shapes. Three pa-
rameters, namely the occurring condition, the primary reflection
coefficient and the effective bandwidth, are adopted to represent
the characteristics of Bragg reflection. The occurring condition is
defined by the value of 2L=l when the phenomenon of Bragg
reflection occurs, where l is thewave length. The primary reflection
coefficient Kp is the corresponding peak reflection coefficient when
the phenomenon of Bragg reflection occurs. The effective band-
width Eb is defined as the range of the value of 2L=l in the region of
Bragg reflection under the condition Kr � Kp=2. Well-designed
surface-piercing fixed structures based on Bragg reflection are ex-
pected to be capable of effectively reflecting waves in a wide range
of wave frequencies. The primary reflection coefficient and the
effective bandwidth are of importance in engineering design.

4.1. Validation of the method

The distance between the hypothetic boundary and its adjacent
structure is set as four times of thewater depth, which is far enough
to ignore the effects of evanescent waves according to Ding et al.
(2018). According to Liu and Abbaspour (1982), about eight small
elements within a wavelength are needed in using the boundary
element method. In the present study, a smaller mesh size is
selected and the minimum number of small elements within a
wavelength is 25. The mesh size on the body surface is about the
same as that on the free surface. Numerical results using these
settings show that the convergence of the reflection and trans-
mission coefficients can be achieved, and the error of the energy
conservation equation Kr2 þ Kt2 ¼ 1:0 is less than 0.2%.

Ouyang et al. (2015) introduced a Radial Basis Function
(different from the present Green Function) to satisfy the Laplace
equation and further developed a numerical model of boundary
discretization type to investigate the wave scattering by rectan-
gular structures. Fig. 2 shows the comparisons of the reflection and
transmission coefficients of the structures with N ¼ 1, d=h ¼ 0:25
and W=h ¼ 0:5 obtained by the present study and by Ouyang et al.
(2015). Fig. 3 shows the comparisons of the reflection coefficient of
the structures with N ¼ 3, d=h ¼ 0:25, W=h ¼ 0:5 and S=h ¼ 2:0.
Excellent agreements can be observed, which demonstrates the
validity of the present boundary element method.

4.2. Advantage of Bragg reflection

Take the structureswith rectangular shape as an example for the
analysis on the advantage of Bragg reflection. Bragg reflection of
water waves by submerged structures on the seabed has been
widely investigated in previous studies. When the same structures
are deployed on the water surface as surface-piercing fixed struc-
tures, the phenomenon of Bragg reflection may be different. Fig. 4
shows the comparisons of the reflection coefficient of the
surface-piercing fixed structures and the submerged structures on
the seabed under the same geometric parameters N ¼ 3, d=h ¼
0:25, W=h ¼ 0:5 and S=h ¼ 2:5. The phenomenon of Bragg

Fig. 2. Comparisons of the reflection and transmission coefficients of the structures.
N ¼ 1, d=h ¼ 0:25 and W=h ¼ 0:5

Fig. 3. Comparisons of the reflection coefficient of the structures. N ¼ 3, d=h ¼ 0:25,
W=h ¼ 0:5 and S=h ¼ 2:0

Fig. 4. Comparisons of the reflection coefficient of the surface-piercing fixed structures
and the submerged structures on the seabed with N ¼ 3, d=h ¼ 0:25, W=h ¼ 0:5 and
S=h ¼ 2:5
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reflection can be obviously observed for both kinds of structures.
However, both the primary reflection coefficient and the effective
bandwidth of the surface-piercing fixed structures are much larger
than those of the submerged structures on the seabed. According to
the linear wave theory, the wave energy rapidly decreases from the
water surface to the seabed. This may help explaining the above
difference of primary reflection coefficient. As it is known, the
primary reflection coefficient can be enlarged by increasing the
number of submerged structures on the seabed. From Fig. 4, it can
be deduced that to obtain the same primary reflection coefficient,
the number of the surface-piercing fixed structures is smaller
compared with the submerged structures on the seabed. Therefore,
when taking advantage of Bragg reflection induced by periodical
structures to attenuate waves, it may be a better choice to adopt
surface-piercing fixed structures.

For surface-piercing fixed structures, three cases, i.e., (a) N ¼ 3,
W=h ¼ 0:5 and S=h ¼ 2:5, (b) N ¼ 1 and W=h ¼ 1:5, and (c) N ¼ 1
and W=h ¼ 0:5, are considered to further analyze the advantage of
Bragg reflection. In all these cases, d=h ¼ 0:25. Fig. 5 shows the
reflection coefficient of the structures versus the nondimensional
wavenumber for these cases.

For case (a), the phenomenon of Bragg reflection can be
observed. The primary reflection coefficient Kp ¼ 0:93 at kh ¼ 1:16.
The corresponding occurring condition of Bragg reflection is 2L=l ¼
1:11, which is in the vicinity of the traditional occurring condition
2L=l ¼ 1:0. For case (b) and case (c), the reflection coefficient keeps
increasing as the nondimensional wavenumber increases. The
former always has the larger reflection coefficient due to the larger
width of the single structure. It can be seen that the single structure
has the better wave attenuation efficiency in most of the wave-
number range. However, in the region where the Bragg reflection
occurs, the structures in case (a) have a significant advantage over
the single structure in case (b) and case (c) to attenuate waves. The
reflection coefficients at kh ¼ 1:16 in case (b) and case (c) are Kr ¼
0:84 and Kr ¼ 0:54, respectively. They are obviously smaller than
the primary reflection coefficient Kp ¼ 0:93 in case (a), although
the width of the single structure in case (b) is the same as the
equivalent width of the structures in case (a). Thus, the Bragg
reflection induced by the surface-piercing fixed structures with
proper configurations indeed has application value in attenuating
waves.

4.3. Comparisons of the structures with different shapes

As shown in Fig. 1, three kinds of surface-piercing fixed struc-
tures with different shapes, namely rectangular, cosinoidal and
triangular, are considered. The area of the single rectangular
structure is A1 ¼ d� W , the area of the single cosinoidal structure
is A2 ¼ 2� d�W=p, and the area of the single triangular structure
is A3 ¼ d� W=2. Fig. 6 shows the comparisons of the reflection
coefficient of the three kinds of structures with the same geometric
parameters N ¼ 3, d=h ¼ 0:25, W=h ¼ 0:5 and S=h ¼ 2:5. It can be
seen that the rectangular structures have the largest primary
reflection coefficient, while the triangular structures have the
smallest primary reflection coefficient, which are consistent with
the area of the structures. This is because that with the same draft
and same width, the area of the structures plays an important role
in attenuating waves, and the larger area provides the larger vol-
ume for wave reflection. The occurring condition and the effective
bandwidth of the cosinoidal structures and the triangular struc-
tures are almost the same, because the difference in their areas is
small. However, the occurring condition of the rectangular struc-
tures moves to left slightly. This may be due to its much larger area
compared with those of other two structures. Similar results were
found in Hsu et al. (2002), though the structures were fixed on the
seabed in their study.

Engineering cost is closely related to the amount of construction
material. For the structures considered here, same areas of the
structures means the same amount of construction material. To see
which kind of structures with same areas is the most efficient one,
the three structures with same areas and samewidths but different
shapes are analyzed. The drafts of the rectangular, cosinoidal and
triangular structures are denoted by d1, d2 and d3, respectively.
Setting d1=h ¼ 0:25 for the rectangular structures, it requires that
d2 ¼ p� d1=2 for the cosinoidal structures and d3 ¼ 2d1 for the
triangular structures. Comparisons of the reflection coefficient of
the three kinds of structures with N ¼ 3, W=h ¼ 0:5 and S=h ¼ 2:5
are shown in Fig. 7. It can be seen that the occurring conditions of
Bragg reflection of the three kinds of structures are almost the
same, indicating that the shape of the structures has few effects on
thewavelength corresponding to the Bragg reflection. However, the
triangular structures have the largest primary reflection coefficient
and the largest effective bandwidth, while the rectangular struc-
tures have the smallest primary reflection coefficient and the
smallest effective bandwidth. This is probably due to the largest

Fig. 5. Comparisons of the reflection coefficient of the structures, d=h ¼ 0:25 for case
(a) N ¼ 3, W=h ¼ 0:5 and S=h ¼ 2:5; case (b) N ¼ 1 and W=h ¼ 1:5; and case (c) N ¼ 1
and W=h ¼ 0:5

Fig. 6. Comparisons of the reflection coefficient of the three kinds of structures. N ¼ 3,
d=h ¼ 0:25, W=h ¼ 0:5 and S=h ¼ 2:5
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draft of the triangular structures, and the larger draft can reflect
more waves back. The larger the primary reflection coefficient and
the effective bandwidth, the more beneficial to take advantage of
Bragg reflection. Therefore, from both aspects of effectiveness of
wave attenuation and material cost, the triangular structures may
be the best choices in practical engineering.

In the following analysis on the characteristics of Bragg reflec-
tion, surface-piercing fixed structures with triangular shape are
chosen. A series of parametric studies are conducted to investigate
the effects of the number, the draft, the width, the gap and the
combination of width and gap of the structures.

4.4. Effects of the number of the structures

Fig. 8 shows the reflection coefficient Kr versus 2L=l for different
numbers of the structures with d=h ¼ 0:25, W=h ¼ 0:5 and S=h ¼
2:5. Table 1 summarizes the characteristics of Bragg reflection. It
can be seen that the variation of the reflection coefficient is rather
complicated, with several crests and valleys in the whole range of
2L=l. For the structures with larger number, more crests and valleys
of the reflection coefficient can be observed. The phenomenon of

Bragg reflection can be apparently observed for all the structures
with different numbers. Meanwhile, all the occurring conditions of
Bragg reflection are in the vicinity of 2L=l ¼ 1:0. The occurring
condition has a slight shift towards left with the increase of the
number of the structures, indicating that the wavelength corre-
sponding to the Bragg reflection becomes larger. When the number
of the structures increases, the primary reflection coefficient keeps
increasing, and nearly total reflection can be achieved finally. For
example, Kp ¼ 0:97 at N ¼ 5. Such a large reflection coefficient is
very favorable for the structures to attenuate waves effectively.
However, the corresponding effective bandwidth becomes nar-
rower and the engineering cost becomes higher for the larger
number of the structures. In practical design, the number of the
structures should be carefully chosen according to the required
primary reflection coefficient and the effective bandwidth.

4.5. Effects of the draft of the structures

Fig. 9 shows the reflection coefficient Kr versus 2L=l for different
drafts of the structures with N ¼ 3, W=h ¼ 0:5 and S=h ¼ 2:5.
Table 2 summarizes the characteristics of Bragg reflection. Similar
variation tendency of the reflection coefficient can be observed for
all the drafts. All the occurring conditions of Bragg reflection are in
the vicinity of 2L=l ¼ 1:0. Moreover, the occurring condition
gradually moves to left as the draft of the structures increases. The
primary reflection coefficient increases as the draft of the struc-
tures becomes larger. It is apparently because more waves can be
obstructed by the structures with larger draft. The effective band-
widthmoves to left as awhole and at the same time becomes wider
with the increasing draft of the structures. For practical applica-
tions, the structures with larger draft would be more advisable,
because not only the higher reflection coefficient can be achieved,
but also the wider applicable effective bandwidth is realized.

According to the traditional occurring condition of Bragg

Fig. 7. Comparisons of the reflection coefficient of the three kinds of structures of same
areas. N ¼ 3, W=h ¼ 0:5 and S=h ¼ 2:5

Fig. 8. Reflection coefficient versus 2L=l with respect to the number of the structures.
d=h ¼ 0:25, W=h ¼ 0:5 and S=h ¼ 2:5

Table 1
Characteristics of Bragg reflection of the structures with different numbers. d=h ¼
0:25, W=h ¼ 0:5 and S=h ¼ 2:5

N 2L/l Kp Eb

3 1.15 0.87 0.83e1.39
4 1.13 0.94 0.86e1.34
5 1.11 0.97 1.11e1.31

Fig. 9. Reflection coefficient versus 2L=lwith respect to the draft of the structures. N ¼
3, W=h ¼ 0:5 and S=h ¼ 2:5
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reflection 2L=l ¼ 1:0, the phenomenon of Bragg reflection is
strongly associated with the periodical length of the structures
when the wavelength of incident wave is constant. The periodical
length of the surface-piercing fixed structures is L ¼ Sþ W . There
exist three kinds of situations: First, the gap S of the structures is
fixed, the width W of the structures varies, and thus the periodical
length L of the structures varies. Second, the width W of the
structures is fixed, the gap S of the structures varies, and thus the
periodical length L of the structures varies. Third, the periodical
length L of the structures is fixed, and both the gap S and the width
W of the structures vary. In the following, the effects of the three
kinds of situations on the characteristics of Bragg reflection are
analyzed respectively.

4.6. Effects of the width of the structures

Fig. 10 shows the reflection coefficient Kr versus 2L=l for
different widths of the structures with N ¼ 3, d=h ¼ 0:25 and
S=h ¼ 2:5. Table 3 summarizes the characteristics of Bragg
reflection. The occurring condition of Bragg reflection signifi-
cantly moves to right as the width of the structures increases. For
example, the occurring condition atW=h ¼ 0:3 is 2L=l ¼ 1:10, and
the occurring condition at W=h ¼ 0:7 becomes 2L=l ¼ 1:19. The
former is still in the vicinity of the traditional occurring condition
2L=l ¼ 1:0, while the latter has an obvious deviation. As the width
of the structures becomes larger, both the primary reflection co-
efficient and the effective bandwidth increase significantly. For
the structures with larger width, more wave energy can be re-
flected in a wider range of wavelength, especially for the waves of
larger wavelength. However, the structures with too larger width
can be replaced by several structures with smaller width, which
can utilize the induced Bragg reflection to help attenuating waves,
as analyzed in subsection 4.2.

4.7. Effects of the gap of the structures

Fig. 11 shows the reflection coefficient Kr versus 2L=l for
different gaps of the structures with N ¼ 3, d=h ¼ 0:25 andW=h ¼
0:5. Table 4 summarizes the characteristics of Bragg reflection. As
the gap of the structures increases, the occurring condition of
Bragg reflection continually moves to left, and becomes closer to
the traditional occurring condition of Bragg reflection 2L=l ¼ 1:0.
For example, the occurring condition at S=h ¼ 1:5 is 2L=l ¼ 1:25,
at S=h ¼ 3:5 is 2L=l ¼ 1:11. The latter can be regarded as still in the
vicinity of the traditional occurring condition 2L=l ¼ 1:0, while
the former has an obvious deviation. The primary reflection co-
efficient has an obvious increase and the effective bandwidth
becomes wider with the deceasing gap of the structures. However,
the wavelength corresponding to the primary reflection coeffi-
cient is much smaller at S=h ¼ 1:5, compared with that at S=h ¼
3:5. Thus, the use of the structures with small gap is limited to
attenuating waves with short wavelength. In practice, the gap of
the structures may be adjusted according to the actual wavelength
of incident wave to obtain the required effectiveness of wave
attenuation.

4.8. Effects of the combination of width and gap of the structures

Fig. 12 shows the reflection coefficient Kr versus 2L=l for
different combinations of width and gap of the structures with N ¼
3, d=h ¼ 0:25 and L=h ¼ 3:0. Table 5 summarizes the characteristics
of Bragg reflection. The effects of the combination of width and gap
of the structures on the characteristics of Bragg reflection can be
found to be consistent with the findings in the above subsections.
For example, the primary reflection coefficient can be enlarged by
increasing thewidth of the structures and decreasing the gap of the
structures.

Table 2
Characteristics of Bragg reflection of the structures with different drafts. N ¼ 3, W=

h ¼ 0:5 and S=h ¼ 2:5

d/h 2L/l Kp Eb

0.15 1.16 0.82 0.86e1.41
0.25 1.15 0.87 0.83e1.39
0.35 1.13 0.92 0.79e1.38

Fig. 10. Reflection coefficient versus 2L=l with respect to the width of the structures.
N ¼ 3, d=h ¼ 0:25 and S=h ¼ 2:5

Table 3
Characteristics of Bragg reflection of the structures with different widths. N ¼ 3, d=
h ¼ 0:25 and S=h ¼ 2:5

W/h 2L/l Kp Eb

0.3 1.10 0.76 0.83e1.31
0.5 1.15 0.87 0.83e1.39
0.7 1.19 0.93 0.84e1.48

Fig. 11. Reflection coefficient versus 2L=l with respect to the gap of the structures. N ¼
3, d=h ¼ 0:25 and W=h ¼ 0:5
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5. Conclusions

Bragg reflection of water waves by surface-piercing fixed
structures with three kinds of shapes, namely rectangular, cosi-
noidal and triangular, is investigated. The boundary element
method is used to solve the problem of wave scattering by these
structures based on the linear wave theory. The calculated reflec-
tion and transmission coefficients are compared with results
available in the literature to verify the validity and accuracy of the
method.

It is concluded that the surface-piercing fixed structures with
proper configurations can effectively attenuate waves when mak-
ing use of Bragg reflection, and among the three kinds of structures
with same width and same area, the triangular structures are the
best choice from overall consideration. Then the characteristics of
Bragg reflection are systematically analyzed for the triangular
structures by changing the number, the draft, the width, the gap
and the combination of width and gap of the structures. The
occurring condition in most situations is in the vicinity of tradi-
tional occurring condition of Bragg reflection. The primary reflec-
tion coefficient can be enlarged by increasing the number and the
draft of the structures. The effective bandwidth becomes wider as
the draft of the structures increases. The periodical length of the
structures should be carefully chosen in practical applications. This

study may provide informative guidance in the preliminary design
of surface-piercing fixed structures based on the Bragg reflection to
protect engineering structures or shoreline from wave attack.
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