• Title/Summary/Keyword: refinement

Search Result 1,668, Processing Time 0.031 seconds

Grain Refinement of Mg-5wt%Zn Alloy by Rapid Solidification Process (급냉응고에 의한 Mg-5wt%Zn 합금의 결정립 미세화)

  • Kim, Yeon-Wook;Lee, Eun-Jong;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.17 no.3
    • /
    • pp.302-308
    • /
    • 1997
  • In spite of the fact that magnesium has low density and good machinability, its applications are restricted as a structural engineering material because of the poor strength, ductility, and corrosion resistance of the conventional ingot metallurgy alloys. Such properties can be improved by microstructural refinement via rapid solidification processing. In this study, Mg-5wt%Zn alloys have been produced as continuous strips by the melt overflow technique. In order to evaluate the influence of the cooling rate on the grain refinement and mechanical properties, seven different thickness strips were produced by means of controlling the speed of the cooling wheel. Then the microstructual observations were undertaken with the objective of evaluating the grain refinement as function of the cooling rate. The tremendous increase in hardness of Mg-Zn alloy was mainly due to the refinement of the grain structure by the effect of rapid solidification. The formation of intermetallic phases on the grain boundaries may have a positive effect on the corroion resistance. Therefore, despite competition from many other developments, the rapid solidification process emerges as a valuable method to develop superior and commercially acceptable magnesium alloys.

  • PDF

p-Adaptive Mesh Refinement of Plate Bending Problem by Modified SPR Technique (수정 SPR 기법에 의한 휨을 받는 평판문제의 적응적 p-체눈 세분화)

  • Jo, Jun-Hyung;Lee, Hee-Jung;Woo, Kwang-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.481-486
    • /
    • 2007
  • The Zienkiewicz-Zhu(Z/Z) error estimate is slightly modified for the hierarchical p-refinement, and is then applied to L-shaped plates subjected to bending to demonstrate its effectiveness. An adaptive procedure in finite element analysis is presented by p-refinement of meshes in conjunction with a posteriori error estimator that is based on the superconvergent patch recovery(SPR) technique. The modified Z/Z error estimate p-refinement is different from the conventional approach because the high order shape functions based on integrals of Legendre polynomials are used to interpolate displacements within an element, on the other hand, the same order of basis function based on Pascal's triangle tree is also used to interpolate recovered stresses. The least-square method is used to fit a polynomial to the stresses computed at the sampling points. The strategy of finding a nearly optimal distribution of polynomial degrees on a fixed finite element mesh is discussed such that a particular element has to be refined automatically to obtain an acceptable level of accuracy by increasing p-levels non-uniformly or selectively. It is noted that the error decreases rapidly with an increase in the number of degrees of freedom and the sequences of p-distributions obtained by the proposed error indicator closely follow the optimal trajectory.

  • PDF

Grid Refinement Model in Lattice Boltzmann Method for Stream Function-Vorticity Formulations (유동함수-와도 관계를 이용한 격자볼츠만 방법에서의 격자 세밀화 모델)

  • Shin, Myung Seob
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.415-423
    • /
    • 2015
  • In this study, we present a grid refinement model in the lattice Boltzmann method (LBM) for two-dimensional incompressible fluid flow. That is, the model combines the desirable features of the lattice Boltzmann method and stream function-vorticity formulations. In order to obtain an accurate result, very fine grid (or lattice) is required near the solid boundary. Therefore, the grid refinement model is used in the lattice Boltzmann method for stream function-vorticity formulation. This approach is more efficient in that it can obtain the same accurate solution as that in single-block approach even if few lattices are used for computation. In order to validate the grid refinement approach for the stream function-vorticity formulation, the numerical simulations of lid-driven cavity flows were performed and good results were obtained.

Grain Refinement and Mechanical Properties Improvement in a Severely Plastic Deformed Ni-30Cr Alloy (강소성 가공된 Ni-30Cr 합금의 결정립 미세화와 기계적 물성 향상)

  • Song, Kuk Hyun;Kim, Han Sol;Kim, Won Yong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.649-656
    • /
    • 2011
  • The present study evaluated the microstructures and mechanical properties of severely deformed Ni-30Cr alloys. Cross-roll rolling (CRR) process was introduced as a severe plastic deformation (SPD), and Ni-30Cr alloy sheets were cold rolled to 90% thickness reduction and subsequently annealed at $700^{\circ}C$ for 30 min to obtain the recrystallized microstructure. Electron back-scattering diffraction (EBSD) was introduced to analyze grain boundary character distributions (GBCDs). The application of CRR to the Ni-30Cr alloy was effective in enhancing the grain refinement through heat treatment; consequently, the average grain size was significantly refined from $33{\mu}m$ in the initial material to $0.6{\mu}m$. This grain refinement directly improved the mechanical properties, in which yield and tensile strengths significantly increased relative to those of the initial material. We systematically discuss the grain refinement and accompanying improvement of the mechanical properties, in terms of the effective strain imposed by CRR relative to conventional rolling (CR).

Blockwise analysis for solving linear systems of equations

  • Smoktunowicz, Alicja
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.31-41
    • /
    • 1999
  • We investigate some techniques of iterative refinement of solutions of a nonsingular system Ax = b with A partitioned into blocks using only single precision arithmetic. We prove that iterative refinement improves a blockwise measure of backward stability. Some applications of the results for the least squares problem (LS) will be also considered.

  • PDF

A REFINEMENT FOR ORDERED LABELED TREES

  • Seo, Seunghyun;Shin, Heesung
    • Korean Journal of Mathematics
    • /
    • v.20 no.2
    • /
    • pp.255-261
    • /
    • 2012
  • Let $\mathcal{O}_n$ be the set of ordered labeled trees on $\{0,\;{\ldots},\;n\}$. A maximal decreasing subtree of an ordered labeled tree is defined by the maximal ordered subtree from the root with all edges being decreasing. In this paper, we study a new refinement $\mathcal{O}_{n,k}$ of $\mathcal{O}_n$, which is the set of ordered labeled trees whose maximal decreasing subtree has $k+1$ vertices.

A Study on the Efficient Meshfree Method Using Adaptive Refinement Analysis (적응적 세분화기법을 이용한 효율적 무요소법에 관한 연구)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.50-56
    • /
    • 2010
  • Meshfree methods show many advantages over finite element method(FEM) in the class of problems for which the remeshing process is inevitable when the conventional FEM used, such as propagating crack problems, large deformation and so on. One of the promising applications of meshfree methods is the adaptive refinement for problems having multi-scale nature. In this study, an adaptive node generation procedure is proposed and several numerical examples are also presented to illustrate the efficiency of proposed method.

Adaptive Mesh Refinement Procedure for Shear Localization Problems

  • Kim, Hyun-Gyu;Im, Se-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2189-2196
    • /
    • 2006
  • The present work is concerned with the development of a procedure for adaptive computations of shear localization problems. The maximum jump of equivalent strain rates across element boundaries is proposed as a simple error indicator based on interpolation errors, and successfully implemented in the adaptive mesh refinement scheme. The time step is controlled by using a parameter related to the Lipschitz constant, and state variables in target elements for refinements are transferred by $L_2$-projection. Consistent tangent moduli with a proper updating scheme for state variables are used to improve the numerical stability in the formation of shear bands. It is observed that the present adaptive mesh refinement procedure shows an excellent performance in the simulation of shear localization problems.

Design of Rolling Path Schedule for Refinement of Austenite Grain (오스테나이트 결정립 미세화를 위한 후판 압연 패스 스케줄의 설계)

  • Hong, Chang-Pyo;Park, Jong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1844-1853
    • /
    • 2001
  • In the present investigation, it was attempted to design the rolling pass schedule fur a clean steel of 0.1C-1.5Mn-0.25Si with the objective of the austenite grain refinement. As the method of approach, a coupled mathematical modeling technique was proposed which consists of a recrystallization model and a flow stress modes. The validity of the coupled model was examined through comparison with results of continuous and discontinuous compression tests at various temperatures, strains and strain rates. The coupled model was incorporated with the finite element method to set up a systematic design methodology far the rolling path schedule for austenite grain refinement. Two path schedules were obtained and discussed in the paper with regard to rolling path time, average grain size, grain size deviation in thickness, etc.

Aerodynamic Analysis of Passenger Car with High Accuracy Using H-refinement (H-분할법을 이용한 승용차의 고정도 공력특성 해석)

  • 김태훈;정수진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.33-41
    • /
    • 2000
  • Three dimensional flow fields around passenger car body was computed by PAM-FLOW, well-known and validated computer program for thermal and fluid analysis. Regarding the computational method, a Navier-Stokes solver based on finite element method with various turbulent models and adaptive grid technique (H-refinement)was adopted. The results were physically reasonable and compared with experimental data, giving good agreement. It was found that three dimensional flow simulation with H-refinement technique had potential for prediction of low fie이 around vehicle and the ability to predict vortex in the wake, which is vital for CFD to be used for automobile aerodynamic calculation.

  • PDF