Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.8.649

Grain Refinement and Mechanical Properties Improvement in a Severely Plastic Deformed Ni-30Cr Alloy  

Song, Kuk Hyun (Korea Institute of Industrial Technology, Advanced Fusion Process R&D Group)
Kim, Han Sol (Korea Institute of Industrial Technology, Advanced Fusion Process R&D Group)
Kim, Won Yong (Korea Institute of Industrial Technology, Advanced Fusion Process R&D Group)
Publication Information
Korean Journal of Metals and Materials / v.49, no.8, 2011 , pp. 649-656 More about this Journal
Abstract
The present study evaluated the microstructures and mechanical properties of severely deformed Ni-30Cr alloys. Cross-roll rolling (CRR) process was introduced as a severe plastic deformation (SPD), and Ni-30Cr alloy sheets were cold rolled to 90% thickness reduction and subsequently annealed at $700^{\circ}C$ for 30 min to obtain the recrystallized microstructure. Electron back-scattering diffraction (EBSD) was introduced to analyze grain boundary character distributions (GBCDs). The application of CRR to the Ni-30Cr alloy was effective in enhancing the grain refinement through heat treatment; consequently, the average grain size was significantly refined from $33{\mu}m$ in the initial material to $0.6{\mu}m$. This grain refinement directly improved the mechanical properties, in which yield and tensile strengths significantly increased relative to those of the initial material. We systematically discuss the grain refinement and accompanying improvement of the mechanical properties, in terms of the effective strain imposed by CRR relative to conventional rolling (CR).
Keywords
metals; cold working; grain refinement; electron backscattering diffraction (EBSD); mechanical properties;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Progr. Mater. Sci. 45, 103 (2000).   DOI   ScienceOn
2 S. X. McFadden, R. S. Mishra, R. Z. Valiev, A. P. Zhilyaev, and A. K. Mukherjee, Nature 398, 684 (1998).
3 Y. Chino, K. Sassa, A. Kamiya, and M. Mabuchi, Mater. Sci. Eng. A 473, 195 (2007).
4 R. Meyer and L. J. Lewis, Phys. Rev. 66, 1 (2002).
5 J. M. Howe, Interfaces in Materials, pp. 346-358, Wiley-Interscience, (1997).
6 F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 1st ed., pp. 21-24, Elsevier Ltd., Oxford (1996).
7 P. Van Houtte, in: C. M. Brakman, P. Jongenburger and E. J. Mittemeijer (Eds.), Proc. ICOTOM7, Netherlands Society for Materials Science, pp. 7-23, Zwijndrecht, Netherlands 1984.
8 J. J. Nah, H. G. Kang, M. Y. Huh, and O. Engler, Scripta Mater. 58, 500 (2008).   DOI   ScienceOn
9 S. H. Kim, H. G. Kang, M. Y. Huh, and O. Engler, Mater. Sci. Eng. A 508, 121 (2009).   DOI   ScienceOn
10 Q. Wei, S. Cheng, K. T. Ramesh, and E. Ma, Mater. Sci. Eng. A 381, 71 (2004).   DOI   ScienceOn
11 N. Krasilnikov, W. Lojkowski, Z. Pakiela, and R. Valiev, Mater. Sci. Eng. A 397, 330 (2005).   DOI   ScienceOn
12 Q. Wei, J. Mater. Sci. 42, 1709 (2007).   DOI   ScienceOn
13 G. S. Was, Corrosion 46, 319 (1990).   DOI
14 W. F. Smith, Structure and Properties of Engineering Alloys, McGraw-Hill, New York (1994).
15 K. Neishi, Z. Horita, and T. G. Langdon, Mater. Sci. Eng. A 325, 54 (2002).   DOI   ScienceOn
16 S. Komura, Z. Horita, M. Nemoto, and T. G. Langdon, J. Mater. Res. 14, 4044 (1999).   DOI
17 Y.C. Choi, H.S. Kim, and S.I. Hong, Met. Mater. Int. 15, 733 (2009).   DOI   ScienceOn
18 Y. H. Jang, S. S. Kim, S. H. Lee, S. Z. Han, C. Y. Lim, C. J. Kim, and M. Goto, J. Kor. Inst. Met. & Mater. 44, 670 (2006).
19 J. Y. An, Y. J. Kwon, D. L. Lee, S. I. Kim, and Y. C. Yoo, J. Kor. Inst. Met. & Mater. 43, 740 (2005).
20 S. H. Lee, D. J. Yoon, K. J. Euh, S. H. Kim, and S. Z Han, J. Kor. Inst. Met. & Mater. 48, 77 (2006).
21 Y. Chino, K. Sassa, A. Kamiya, and M. Mabuchi, Mater. Sci. Eng. A 441, 349 (2006).   DOI   ScienceOn