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Abstract

We investigate some techniques of iterative re�nement of solutions of a non-

singular system Ax = b with A partitioned into blocks using only single precision

arithmetic.

We prove that iterative re�nement improves a blockwise measure of backward

stability. Some applications of the results for the least squares problem (LS) will

be also considered.

Introduction In this paper we present various kinds of iterative re�nement tech-

niques for the solution of linear systems of the form

Ax = b;(1)

where A is an n � n nonsingular matrix and has special block structure. We assume

that the matrix A is partitioned into s� s blocks

A =

2
6664
A1;1 A1;2 : : : A1;s

A2;1 A2;2 : : : A2;s

::: ::: ::: :::

A
s;1 A

s;2 : : : A
s;s

3
7775(2)

where A
i;j

2 IRnixnj is re�ered to as the (i; j) block of A, fn1; : : : ; nsg is a given

set of positive integers, n1 + : : : + n
s

= n. The vector x is partitioned conformally:

x = [x1
T ; : : : ; x

s

T ]T where x
i
(n

i
� 1) and �(x) = [k x1 k; : : : ; k xs k]

T .

Without loss of generality we assume that we consider only the spectral matrix norm

and the second vector norm (length of x).

We would like to obtain algorithms that produce solutions y accurate to full machine

precision, i.e. y is a solution of a slightly perturbed system (A + E)y = b where

k E
i;j

k� � k A
i;j

k and � is small. We call such algorithms blockwise backward

stable. Such algorithms are attractive because in some numerical applications it is

important that the perturbed matrix A + E has the same structure as A: A
i;j

= 0

implies that E
i;j

= 0.

Key Words :Iterative re�nement, rounding error analysis, condition number, blockwise error
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We extend existing de�nitions of normwise and componentwise backward error to

block matrices by introducing a matricial norm of A [18], [9]:

�(A) =

2
6664
k A1;1 k k A1;2 k : : : k A1;s k

k A2;1 k k A2;2 k : : : k A2;s k

::: ::: ::: :::

k A
s;1 k k A

s;2 k : : : k A
s;s

k

3
7775(3)

where k B k= k B k
2

denotes the spectral norm.

Some important cases of matricial norms are: �(A) =j A j for s = n and �(A) =k

A k2 for s = 1. The matrix j A j is the matrix whose elements are j a
i;j
j and we write

j A j�j B j to mean that inequalities between matrices hold componentwise.

It is obvious that componentwise backward stability (for s = n) implies blockwise

backward stability and that blockwise backward stability yields to normwise backward

stability (for s = 1).

We investigate some techniques of iterative re�nement of solutions of a nonsingular

system Ax = b with A partitioned into blocks using only single precision arithmetic.

Our numerical analysis is similar in spirit to that of N.J.Higham [14], [15], and R.Skeel

[22].

1 Linear least squares problem (LS)

We consider the solution of the linear least squares problem

min
x

k b�Ax k;(4)

where A(m� n) and m � n = rank(A).

The solution x of (4) is the solution of the normal equation system

ATAx = AT b:(5)

If r = b�Ax then r and x satisfy the augmented system Mz = f where

M =

"
I
m

A

AT 0

#
(6)

and z = [rT ; xT ]T , f = [bT ; 0T ]T . Here I
m

denotes the identity matrix of order m.

The matrix M is nonsingular and symmetric. It is interesting that the inverse of

the augmented matrix M can be expressed in the terms of the pseudoinverse matrix of

A,

A+ = (ATA)�1AT :
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We have (see [1], [6], [7]):

M�1 =

"
P (A+)T

A+ �(ATA)�1;

#
(7)

where P = I
m
�AA+.

If s = n1 + n2, n1 = m and n2 = n then we get

�(M) =

"
1 �1
�1 0

#
(8)

and

�(M�1) =

"
1 1

�n

1

�n

1

�n
2

#
(9)

�1, �n being, respectively, the biggest and the smallest singular values of A.

We see that we can study the property of the algorithms for solving LS problem

using the general blockwise approach.

2 Blockwise perturbation analysis

In this section we derive perturbation results and condition numbers in a blockwise

sense. We extend the Bauer-Skeel analysis [3], [22] to a linear system of equation (1)

with A partitioned into blocks.

We review of the main facts on the matricial norms; see [18] and [9].

Theorem 2.1 Let � be a matricial norm on 2 IRn�n. For matrices A and B parti-

tioned as in (2), (3) we have

(1) �(cA) =j c j �(A) for c 2 IR,

(2) �(A + B) � �(A) + �(B),

(3) �(AB) � �(A)�(B),

(4) �(A) 6= 0 if A 6= 0,

(5) �(x + y) � �(x) + �(y) for x; y 2 IRn,

(6) �(Ax) � �(A)�(x),

(7) �(A) � �(�(A)),

(8) k A k�k �(A) k.

Here �(A) = maxf� : � 2 spect(A)g denotes the spectral radius of A.
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The property (7) is a generalization of the Perron-Frobenius inequality and was �rst

proved by Ostrowski [18]; see also [9].

The property (8) is an immediate consequence of k A k
2 = �(ATA).

We can now state the analogues of the theorems proved by Skeel [22] for the com-

ponentwise case (s = n).

How sensitive is the solution � of Ax = b to perturbations in A ?

Theorem 2.2 Let A 2 IRn�n be nonsingular, A� = b and (A + E)y = b, where

�(E) � ��(A). Assume that � cond
�
(A) < 1 where

C = �(A�1)�(A)

and

cond
�
(A) =k C k

is called a blockwise condition number of A. Then

�(y � �) � � (I � �C)�1 C �(�)(10)

and
k y � � k

k � k
� �

cond
�
(A;�)

1� � cond
�
(A)

;(11)

where

cond
�
(A;�) =

k �(A�1)�(A)�(�) k

k � k
:

Proof. Since � = A�1b and y � � = �(I + A�1E)�1A�1E�, we have

y � � = �(A�1E � (A�1E)2 + : : :) �:

Taking norms we get �(y � �) � (�(A�1E) + �((A�1E)2) + : : :) �(�):

Since �(A�1E) � �C hence �(y � �) � (�C + �2C2 + : : :) �(�) which leads to the

inequalities (10) and (11).

Theorem 2.3 We have the following inequalities:

(i) cond
�
(A) � 1,

(ii) cond
�
(A;�) � cond

�
(A),

(iii) cond
�
(A) � s2 cond(A) where cond(A) =k A�1 kk A k denotes the normwise

condition number of A.

(iv) kj A�1 jj A jk� s
1
2 cond

�
(A) where kj A�1 jj A jk denotes the componentwise

Bauer-Skeel condition number of A.
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Proof. The proof of (i) is straightforward. We have I = A�1A. Thus �(I) �

�(A�1)�(A) and by Theorem 1.1 (8) we obtain that 1 � cond
�
(A).

The proof of (ii) is a consequence of the fact that the spectral norm is consistent:

k Cx k�k C kk x k.

In order to prove (iii) and (iv) we use the following inequalities:

k �(A) k� smax
i;j

k A
i;j
k � s k A k

and

k �(j A j) k� s
1
2 k �(A) k :

Theorem 2.4 (Rigal and Gaches) The blockwise relative error

�
�
(y) = minf� : (A + E)y = b; �(E) � ��(A)g(12)

is given by

�
�
(y) = max

i

k r
i
k

g
i

;

where r = b�Ay and g = �(A)�(y) are partitioned as

r = [r1
T ; : : : ; r

s

T ]T , g = [g1
T ; : : : ; g

s

T ]T ; where r
i
; g

i
2 Rni for i = 1; : : : ; s.

Here �=0 is interpreted as zero if � = 0 and in�nity otherwise.

Proof. It is easily seen that this bound is attained for the perturbation E where

E
i;j

=
k A

i;j
k r

i
y
j

T

g
i
k y

j
k

:

Then

k E
i;j
k=

k A
i;j
kk r

i
k

g
i

:

We can use the blockwise relative error as an easy way to terminate process. We

have to check if �(b�Ay) � �(A) �(y) 10�10 (say).

We prove that the speed of the convergence of iterative re�nement depends mainly

on the blockwise condition number of Ax = b which measures the sensivity of the

solution z to perturbations in the data and on the accuracy of computing residual

vector r = b � Az. Notice that if a system Ax = b is ill-conditioned then usually we

can't �nd the solution x to very high accuracy in a blockwise sense.
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3 Stability of the iterative re�nement algorithm

The solution of the nonsingular linear system Ax = b by some algorithm can be de-

noted by W (b); that is, W is a mapping that approximates A�1 but is nonlinear due

to oating point arithmetic.

We say that W is forward stable if there is some modest constant K1 depending

only on n such that

k W (b)�A�1b k� �K1 cond k A�1b k;(13)

whenever �K1 cond � 0:1 where

cond = cond
�
(A) = k �(A�1)�(A) k(14)

is the blockwise condition number of A and � is the precision.

We say that W is backward stable (normwise backward stable) if there is some

modest constant K2 depending only on n such that

k AW (b) � b k� �K2 k A kk A�1b k :(15)

We investigate recurrent iterative re�nement (RIR) for solving nonsingular

linear systems Ax = b using only single precision arithmetic ().

Recurrent iterative re�nement was proposed by Wo�zniakowski; see eg. [16] . Kiel-

basi�nski [17], Sokolnicka and Smoktunowicz [24] applied this algorithm in increasing

precision arithmetics (BCIR{ binary cascades iterative re�nement). Smoktunowicz [23],

[25] developed results for RIR using only single precision arithmetic.

For recurrent iterative re�nement we need a basic (direct or iterative) linear equation

solver S0 such that

k S0(b) �A�1b k� q k A�1b k;

where q � 1.

A single iteration of iterative re�nement is given by 1-fold iterative re�nement

:

x = S0(b)

r = fl(b�Ax)

p = S0(r)

y = fl(x + p).

Let us use S1(b) to denote the result y of this computation. We call this 1-fold iterative

re�nement.

The idea of (k+1)- fold iterative re�nement is to replace S0 in the above algorithm

by S
k
. Thus S

k+1 is de�ned to be the result y of the computation:

x = S
k
(f)

r = fl(f �Ax)

p = S
k
(r)

y = fl(x+ p).
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If p = S
k
(r) is replaced by p = S0(r) then the algorithm is k iterations of classical

iterative re�nement (IR).

Recurrent iterative re�nement requires additional storage proportional to the depth

of the recursion, which will not be too great because the computation time is propor-

tional to 2k.

In this section we consider only the case s = n: �(A) =j A j.

The explicit oating-point computations are assumed to satisfy

r = (I + D)(f � (A + G)u); �(D) � ��(I); �(G) � �L�(A);(16)

where L � 1 depends on n alone, and

y = (I + F )(u + d); �(F ) � ��(I):(17)

We can use di�erent kinds of algorithms for computing Au, because v = Au can be

written in the form v
i

=
P

s

j=1Ai;j
u
j
, i = 1; : : : ; s and computed in parallel by di�erent

processors.

Theorem 3.1 (1) Suppose that � � 0:01 and

k S
k
(f)�A�1f k� 

k
k A�1f k;

where 
k
� 1. Then (1) holds for k + 1 with


k+1 = 

k

2 + �8:11L cond

and

cond = cond
�
(A) = k �(A�1)�(A) k :(18)

(2) Suppose in addition that �cond � 0:01 and

k AS
k
(f)� f k� �

k
k A kk A�1f k :

Then (2) holds for k + 1 with

�
k+1 = (

k
+ �4:02L cond) �

k
+ �4:09L:

Proof. We have S
k+1(f) = y where

u = S
k
(f);

r = (I + D)(f � (A + G)u);

d = S
k
(r);

y = (I + F )(u + d):
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(1) It is su�cient to show that

k y �A�1f k� 
k+1 k A

�1f k :

We have

y �A�1f = u + d�A�1f + F (u + d)

and so

k y �A�1f k�k u + d�A�1f k +� k u + d k

with

k u + d k�k A�1f k + k u + d�A�1f k :

Making use of (1), we have

k u + d�A�1f k� 
k
k A�1r k + k A�1r �A�1f + u k

and, again, we get

k A�1r k� 
k
k A�1f k + k A�1r �A�1f + u k :

For the last term we obtain

A�1r �A�1f + u = �A�1DA(u�A�1f)�A�1(I + D)Gu;

from which we get

k A�1r �A�1f + u k� �cond
k
k A�1f k +�1:01 Lcond k u k

with

k u k� (1 + 
k
) k A�1f k� 2 k A�1f k :

Working backwards on the chain of inequalities we have

k A�1r �A�1f + u k� �3:02 Lcond k A�1f k;

k A�1r k� (
k

+ �3:02 Lcond) k A�1f k;

k u + d�A�1f k� (
k

2 + �6:04 Lcond) k A�1f k;

k u + d k� (2 + � 6:04L cond) k A�1f k

where we have used 
k
� 1.

(2) It is enough to show that

k Ay � f k� �
k+1 k A kk A�1f k :

We obtain

k Ay � f k�k A(u + d) � f k +� k A kk u + d k :
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Using (2), we have

k A(u + d)� f k�k r � f + Au k +�
k
k A kk A�1r k :

From this it follows that

k A(u + d) � f k� ((
k

+ � 4:02Lcond)�
k

+ �2:02 L) k A kk A�1f k :

Combining this with 1 � L cond and � cond � 0:01 establishes (2).

Theorem 3.2 (1) Assume that 0 � 0:9 (say) and � Lcond � 0:01 (say). Then there

exists k1 depending only on n such that

k S
k
(f)�A�1f k� �10L cond k A�1f k

whenever k � k1 and

cond = cond
�
(A) = k �(A�1)�(A) k :(19)

(2) Also there exists k2 depending only on n such that

k AS
k
(f)� f k� �5 L k A kk A�1f k

whenever k � k2.

Proof. Using the previous theorem, we show by induction on k that the pair of

conditions


k
� 0:9;


k+1 = 

k

2 + �8:11 Lcond

holds for all k. It can be shown that the limit of the sequence f
k
g is less than �9L cond,

which establishes the �rst result.

(2) Clearly we can choose �0 � 0. Then it is easy to show that �
k
� 

k
for all k

so that for k � k� we have

�
k
� �10 L cond � 0:1;

�
k+1 � 0:15�

k
+ � 4:09L

from which the second result easily follows.
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