• Title/Summary/Keyword: reduction gear ratio

Search Result 63, Processing Time 0.027 seconds

Work load analysis for determination of the reduction gear ratio for a 78 kW all wheel drive electric tractor design

  • Kim, Wan-Soo;Baek, Seung-Yun;Kim, Taek-Jin;Kim, Yeon-Soo;Park, Seong-Un;Choi, Chang-Hyun;Hong, Soon-Jung;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.613-627
    • /
    • 2019
  • The purpose of this study was to design a powertrain for a 78 kW AWD (all wheel drive) electric tractor by analyzing the combination of various reduction gear ratios on a commercial motor using data from actual agricultural work and driving conditions. A load measurement system was constructed to collect data using wheel torque meters, proximity sensors, and a data acquisition system. Field experiments for measuring load data were performed for two environmental driving conditions (on asphalt and soil) and four agricultural operations (plow tillage, rotary tillage, loader operation, and baler operation). The attached implements and gear stages were selected through farmer surveys. The range of the reduction ratio was determined by selecting the minimum reduction ratio needed to satisfy the torque condition required for agricultural operations and the maximum reduction gear ratio to satisfy the maximum travel speed. The minimum reduction gear ratio selected was 57 in consideration of the working load condition and the maximum reduction gear ratio selected was 62 considering the maximum running speed. In the range of the reduction gear ratio 57 - 62, the selected motor satisfied all working torque conditions. As a result, the combination of the selected motor and reduction gear ratio was applicable for satisfying the loads required during agricultural operation and driving operation.

Optimum Reduction Gear Ratio for a Rapid Transit Car in Seoul (서울 지하철 전동차의 최적 감속기어비)

  • ;;Lee, Jang Moo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.3
    • /
    • pp.124-131
    • /
    • 1979
  • An optimim reduction gear ratio problem for a subway rapid transit car in Seoul was solved by using a computer program package, which is a modified and extened version of the simple model by Mischke. The optimum value of reduction gear ratio was evaluated by minimizing the total start-to stop time.The validity of the computer program package was verified by cross-checking the calculated values of gear ratio and dynamic characteristics with the actual and measured values.

Development of High-Ratio Planetary Reduction Gears Applied Differential Ring Gear Type (차동 링기어 방식의 고비율 유성기어 감속기 개발)

  • 박규식;이기명;김유일
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.497-502
    • /
    • 1997
  • Automation facilities of greenhouses have been continuously developed. However, the conventional two-stage worm gear reducer reveals some problems, including low transmission efficiency. The worm gear reducer also have some difficulties in manufacturing and short life. Therefore, this study was performed to develop a planetary gear reducer, having a high Sear reduction ratio and high torque transmission efficiency. The planetary gear system consisted of a fixed ring gear and a 2-teeth differential ring gear turning slow, as the planetary pinion orbits fast around the fixed ring gear. The developed gear system can achieve a high speed reduction rate at one stage. The reducing system was employed to the greenhouse ventilation system. The reducer has the transmission efficiency of 70.5%, 2∼3 times longer life time, and twofold roll-up torque at an affordable price, comparing with conventional reducers. This reducer can be also applied to many industrial equipments, such as industrial crane, hoist, elevator and gondola etc.

  • PDF

Frequency Response Characteristics of Two-Staged Gear Reduction Servo System According to the Backlash Contribution Ratio Variation of Each Gear Reduction Stage (감속단 백래시 기여율 변화에 따른 2단 기어 감속서보 시스템의 주파수 응답 특성)

  • Baek, Joo-Hyun;Hong, Sung-Min;Yang, Tae-Suk;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.103-109
    • /
    • 2002
  • The paper investigates the change of frequency response characteristics on two-stage gear reduction servo system according to the variation of backlash amount of each gear reduction stage, under the condition that the backlash of total system is constant. It is shown that the frequency response characteristics of the system heavily depend on the contribution ratio which is defined as a ratio of the first backlash amount to the total backlash. It is also found that there is an optimal backlash combination to maximize the bandwidth of two-stage gear reduction servo system when the allowable total backlash is determined.

Development of Dual Stage Profile Shifted Gear System with Bearing-Integrated Structure for High Reduction Ratio (고감속비를 가지는 베어링일체형 구조의 2단 전위 감속기의 개발)

  • Hwang, Il-Kyu;Choi, Jung-Soo;Jung, Moon-Soo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.5
    • /
    • pp.312-323
    • /
    • 2012
  • Planetary gearing is a gear system consisting of one or more planet gears, revolving about a sun gear. While the planetary gear system has many advantages- for example, high power density, large reduction in a small volume, multiple kinematic combinations, pure torsional reactions, and coaxial shafting, it has not been widely used because of its high bearing loads, inaccessibility, and design complexity. It is also necessary to shift several pairs of gear profiles at a same time. Therefore, designing profile shifted planetary gear system is a difficult and know-how dependent job. This study provides a practical solution to design a profile shifted gear system by the procedural design scheme, and proposes a bearing integrated structure of the dual stage profile shifted gear system with a robust output end. A dual stage profile shifted gear system with the bearing integrated structure is manufactured by the proposed design scheme in this study. This gear system is verified that it is good enough to commercialize, because it has high performance with high gear ratio and robust output end against axial and radial directional runouts in a small space.

The research regarding the epicyclic gear system development for a rate of high-reduction embodiment (고감속비 구현을 위한 유성기어 시스템 개발에 관한 연구)

  • Han M.S.;Kim S.Y.;Park J.W.;Lee S.S.;Kim S.K.;Jeon E.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.347-348
    • /
    • 2006
  • Among various gear system, planetary gear system has the best characteristics in high efficiency, excellent strength capacity, easy convertible speed control, and compact design aspect. Strength of gear is considered as the most important design factor. We have studied tooth form and the planetary gear system that have high reduction gear ratio is created by using the involute curve.

  • PDF

A Study on the Embodiment of a Transfer Case with High-Speed Reduction of the Planetary Gear Type Applied to Big Industrial Vehicles (대형 산업 차량에 적용되는 유성기어형 고감속 중간변속기 구현에 관한 연구)

  • Lee, Won-Kyu;Park, Se-Myoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.14-20
    • /
    • 2015
  • A high-speed reduction transfer case is usually employed by an excavator, wheel loader, or bulldozer. When powerful torque is required in the case of climbing steep roads or towing heavy equipment, the high-speed reduction mode of the gearbox is used. Generally, a transfer case using a spur gear type with a speed reduction system has a speed reduction ratio of 1 to 1 or 2 to 1. However, the structure of a transfer case achieved at a high speed of 1 to 1 and a low speed of 4.5 or under 5.5 to 1 with the speed reduction by use of a planetary gear type with a speed reduction system was proposed in this study. By employing a planetary gear type with a speed reduction system, the compact structure of the transfer case was achieved, and the impact or the partial defect of gear teeth was eliminated.

A Development of Noise Detection System Utilizing the Vibrating Accelerative Sensor for the Reduction Gear Box (진동가속도센서를 이용한 Reduction Gear Box Noise 검출시스템 개발)

  • Cheon, Jong-Pil;Pyun, Young-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.274-279
    • /
    • 2009
  • Reduction Gear Box where from productive site uses the gear with power delivery with high mechanical efficiency of power a deceleration and as the mechanical element union product which has the velocity ratio which is various together is produced with the power occurrence motor and leads gets a high driving force is plentifully used. The above occurs from gear drive issue sound Whine, Noise and Vibration as occurring from the rim process which the gear will bite mainly is delivered with the case etc. gear drive whole which leads the axis and the bearing. The productivity falls with the going straight rate decrease which with like this problem point is caused by with rework the problem point where the cost of production rises under improving boil many kinds analyzed the plan and investigates the resultant acceleration sensor which and a frequency analysis system and was made to apply.

  • PDF

Generation and Preliminary Design of Compound Multi-Stage Gear Drive Mechanisms (복합 다단 기어장치 메커니즘의 생성 및 초기설계)

  • 정태형;김장수;박승현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.53-58
    • /
    • 2003
  • In recent years, the need for multi-stage gear drives, which highly reduce output speed, has been increased. However, the design of multi-stage gear drives have been carried out by a limited number of experts. The consideration for the direction of input and output axes also makes their design very difficult. The purpose of this study is to develop an algorithm for automatically generating complex multi-stage gear drives and to implement a design supporting system for multi-stage gear drives. There are 4 stages in the proposed algorithm, and major design parameters,.such as the direction of input and output axes, reduction ratio, etc. are set up in the first stage. In the second stage, all mechanisms are generated, and various rules are applied to select feasible mechanisms. In the third stage, the gear ratio of each stage is divided from total gear ratio. Next, the specifications of gears for feasible mechanisms are calculated and their bending strength and surface durability are estimated. In the forth stage, appraised indexes are calculated and provided to support the estimation of the generated gear drives.

  • PDF

Generation and Preliminary Design of Compound Multi-Stage Gear Drive Mechanisms (복합 다단 기어장치 메커니즘의 생성 및 초기설계)

  • Chong Tae-Hyong;Kim Jang-Soo;Park Seung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.41-48
    • /
    • 2005
  • In recent years, the need for multi-stage gear drives which highly reduce output speed has been increased. However, the design of multi-stage gear drives has been carried out by a limited number of experts. The consideration for the direction of input and output axes also makes their design very difficult. The purpose of this study is to develop an algorithm for automatically generating complex multi-stage gear drives and to implement a design supporting system for multi-stage gear drives. There are 4 stages in the proposed algorithm, and major design parameters, such as the direction of input and output axes, reduction ratio, etc. are set up in the first stage. In the second stage, all mechanisms are generated, and various rules are applied to select feasible mechanisms. In the third stage, the gear ratio of each stage is divided from total gear ratio. Next, the specifications of gears for feasible mechanisms are calculated and their bending strength and surface durability are estimated. In the forth stage, appraised indexes are calculated and provided to support the estimation of the generated gear drives.