• Title/Summary/Keyword: reducing memory

Search Result 422, Processing Time 0.042 seconds

Page Replacement Policy for Memory Load Adaption to Reduce Storage Writes and Page Faults (스토리지 쓰기량과 페이지 폴트를 줄이는 메모리 부하 적응형 페이지 교체 정책)

  • Bahn, Hyokyung;Park, Yunjoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.57-62
    • /
    • 2022
  • Recently, fast storage media such as phage-change memory (PCM) emerge, and memory management policies for slow disk storage need to be revisited. In this paper, we propose a new page replacement policy that makes use of PCM as a swap device of virtual memory systems. The proposed policy aims at reducing write traffic to the swap device as well as reducing the number of page faults pursued by traditional page replacement policies. This is because a write operation in PCM is slow and PCM has limited write endurances. Specifically, the proposed policy focuses on the reduction of page faults when the memory load of the system is high, but it aims at reducing write traffic to storage when free memory space is sufficient. Simulation experiments with various memory reference traces show that the proposed policy reduces write traffic to PCM without performance degradations.

Reducing False Sharing based on Memory Reference Patterns in Distributed Shared Memory Systems (분산 공유 메모리 시스템에서 메모리 참조 패턴에 근거한 거짓 공유 감속 기법)

  • Jo, Seong-Je
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1082-1091
    • /
    • 2000
  • In Distributed Shared Memory systems, false sharing occurs when two different data items, not shared but accessed by two different processors, are allocated to a single block and is an important factor in degrading system performance. The paper first analyzes shared memory allocation and reference patterns in parallel applications that allocate memory for shared data objects using a dynamic memory allocator. The shared objects are sequentially allocated and generally show different reference patterns. If the objects with the same size are requested successively as many times as the number of processors, each object is referenced by only a particular processor. If the objects with the same size are requested successively much more than the number of processors, two or more successive objects are referenced by only particular processors. On the basis of these analyses, we propose a memory allocation scheme which allocates each object requested by different processors to different pages and evaluate the existing memory allocation techniques for reducing false sharing faults. Our allocation scheme reduces a considerable amount of false sharing faults for some applications with a little additional memory space.

  • PDF

Memory Enhancing and Antioxidant Properties of Fermented Chongmyung-tang

  • Nam, Jung-Il;Park, Yeun-Woo;Jeon, Hoon
    • Natural Product Sciences
    • /
    • v.16 no.2
    • /
    • pp.93-98
    • /
    • 2010
  • The Chongmyung-tang (CMT) has been used as an oriental herbal medicine for the purpose of enhanced learning and memory. Recently, since fermentation may give a positive effect on pharmacological actions of herbal medicine, many studies are focused to find fermented medicinal herbs with improved bioactivity. In the present study, memory enhancing, antioxidant and reducing power activity of CMT and fermented CMT with Aspergillus oryzae (FCMT-A) or Saccharomyces cerevisiae (FCMT-S) were determined. To evaluate the memory enhancing activities of CMT, FCMT-A and FCMT-S, we performed passive avoidance test using scopolamine induced amnesia model. Administration of CMT, FCMT-A and FCMT-S showed a significant memory enhancing effect about 72.5, 78.3, 71.8% of the normal group respectively. CMT, FCMT-A and FCMT-S also exhibited strong $DPPH{\bullet}$, ${\bullet}{O_2}^-$, $NO^{\codt}$, $ABTS^{{\cdot}+}$ scavenging activities and reducing ower. It was also found that fermented CMT has slightly higher scavenging activities on $DPPH{\bullet}$, $ABTS^{{\cdot}+}$ radicals compared to CMT. These results revealed that CMT, FCMT-A and FCMT-S had memory enhancing and radical scavenging activities. In addition, the fermentation of CMT was more or less important for elevated memory enhancing and antioxidant activities of CMT.

An Equalizing Algorithm for Cell-to-Cell Interference Reduction in MLC NAND Flash Memory (MLC NAND 플래시 메모리의 셀 간 간섭현상 감소를 위한 등화기 알고리즘)

  • Kim, Doo-Hwan;Lee, Sang-Jin;Nam, Ki-Hun;Kim, Shi-Ho;Cho, Kyoung-Rok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1095-1102
    • /
    • 2010
  • This paper presents an equalizer reducing CCI(cell-to-cell interference) in MLC NAND flash memory. High growth of the flash memory market has been driven by two combined technological efforts that are an aggressive scaling technique which doubles the memory density every year and the introduction of MLC(multi level cell) technology. Therefore, the CCI is a critical factor which affects occurring data errors in cells. We introduced an equation of CCI model and designed an equalizer reducing CCI based on the proposed equation. In the model, we have been considered the floating gate capacitance coupling effect, the direct field effect, and programming methods of the MLC NAND flash memory. Also we design and verify the proposed equalizer using Matlab. As the simulation result, the error correction ratio of the equalizer shows about 20% under 20nm NAND process where the memory channel model has serious CCI.

A Low Power Design of H.264 Codec Based on Hardware and Software Co-design

  • Park, Seong-Mo;Lee, Suk-Ho;Shin, Kyoung-Seon;Lee, Jae-Jin;Chung, Moo-Kyoung;Lee, Jun-Young;Eum, Nak-Woong
    • Information and Communications Magazine
    • /
    • v.25 no.12
    • /
    • pp.10-18
    • /
    • 2008
  • In this paper, we present a low-power design of H.264 codec based on dedicated hardware and software solution on EMP(ETRI Multi-core platform). The dedicated hardware scheme has reducing computation using motion estimation skip and reducing memory access for motion estimation. The design reduces data transfer load to 66% compared to conventional method. The gate count of H.264 encoder and the performance is about 455k and 43Mhz@30fps with D1(720x480) for H.264 encoder. The software solution is with ASIP(Application Specific Instruction Processor) that it is SIMD(Single Instruction Multiple Data), Dual Issue VLIW(Very Long Instruction Word) core, specified register file for SIMD, internal memory and data memory access for memory controller, 6 step pipeline, and 32 bits bus width. Performance and gate count is 400MHz@30fps with CIF(Common Intermediated format) and about 100k per core for H.264 decoder.

Adaptive Writeback-aware Cache Management Policy for Lifetime Extension of Non-volatile Memory

  • Hwang, Sang-Ho;Choi, Ju Hee;Kwak, Jong Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.514-523
    • /
    • 2017
  • In this paper, we propose Adaptive Writeback-aware Cache management (AWC) to prolong the lifetime of non-volatile main memory systems by reducing the number of writebacks. The last-level cache in AWC is partitioned into Least Recently Used (LRU) segment and LRU using Dirty block Precedence (DP-LRU) segment. The DP-LRU segment evicts clean blocks first for giving reuse opportunity to dirty blocks. AWC can also determine the efficient size of DP-LRU segment for reducing the number of writebacks according to memory access patterns of programs. In the performance evaluation, we showed that AWC reduced the number of writebacks up to 29% and 46%, and saved the energy of a main memory system up to 23% and 49% in a single-core and multi-core, respectively. AWC also reduced the runtime by 1.5% and 3.2% on average compared to previous cache managements for non-volatile main memory systems, in a single-core and a multi-core, respectively.

Way-set Associative Management for Low Power Hybrid L2 Cache Memory (고성능 저전력 하이브리드 L2 캐시 메모리를 위한 연관사상 집합 관리)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.3
    • /
    • pp.125-131
    • /
    • 2018
  • STT-RAM is attracting as a next generation Non-volatile memory for replacing cache memory with low leakage energy, high integration and memory access performance similar to SRAM. However, there is problem of write operations as the other Non_volatile memory. Hybrid cache memory using SRAM and STT-RAM is attracting attention as a cache memory structure with lowe power consumption. Despite this, reducing the leakage energy consumption by the STT-RAM is still lacking access to the Dynamic energy. In this paper, we proposed as energy management method such as a way-selection approach for hybrid L2 cache fo SRAM and STT-RAM and memory selection method of write/read operation. According to the simulation results, the proposed hybrid cache memory reduced the average energy consumption by 40% on SPEC CPU 2006, compared with SRAM cache memory.

Performance Evaluation and Design of DTMF Receiver with a Subset of $2^M$ Data Point

  • Kye, Sung-Su;Lee, Jae-Kyung;Yoon, Dal-Hwan;Min, Seung-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1638-1642
    • /
    • 2003
  • In this paper, we have analyzed the power spectra and evaluate the performance of DTMF receiver by using the quick Fourier transform(QFT) algorithm. The economical signals detection of dual-tone multifrequency(DTMF) receiver is an important factor when developing cost-effective telecommunication equipment. In experimental results, it shows that reducing memory waste and can process the real-time.

  • PDF

A Study on the Improvement of Frame Memory Interface of MPEG-2 Video Encoder (MPEG-2 비디오 부호화기의 프레임 메모리 인터페이스 개선에 관한 연구)

  • 이인섭;임순자;김환용
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.2
    • /
    • pp.211-218
    • /
    • 2001
  • In this paper, we propose the structure of utilizing the memory map, which is using not conventional DRAM but SDRAM, for the hardware implementation of frame memory interface module to the video encoder. As reducing the size of memory map and interface buffer within the same bus, the hardware complexity is improved and the hardware size is minimized as simplifying the interface logic. The conventional system is wasted access time, because of accessing randomly stored data in order to store and output the memories in macro-block unit. therefore the method, which is proposed in this paper, can be effectively reducing the access time of memory, because of the data is stored and processed by line unit.

  • PDF

Reduced contact size in $Ge_1Se_1Te_2$ for phase change random access memory (PRAM에서 $Ge_1Se_1Te_2$와 전극의 접촉 면적을 줄이는 방법에 대한 효과)

  • Lim, Dong-Kyu;Kim, Jae-Hoon;Na, Min-Seok;Choi, Hyuk;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.154-155
    • /
    • 2007
  • PRAM(Phase-Change RAM) is a promising memory that can solve the problem of conventional memory and has the nearly ideal memory characteristics. We reviewed the issues for high density PRAM integration. Writing current reduction is the most urgent problem for high density PRAM realization. So, we studied new constitution of $Ge_1Se_1Te_2$ chalcogenide material and presented the method of reducing the contact size between $Ge_1Se_1Te_2$ and electrode. A small-contact-area electrode is used primarily to supply current into and minimize heat loss from the chalcogenide. In this letter, we expect the method of reducing the contact size between $Ge_1Se_1Te_2$ and electrode to decrease writing current.

  • PDF