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Abstract—In this paper, we propose Adaptive 
Writeback-aware Cache management (AWC) to 
prolong the lifetime of non-volatile main memory 
systems by reducing the number of writebacks. The 
last-level cache in AWC is partitioned into Least 
Recently Used (LRU) segment and LRU using Dirty 
block Precedence (DP-LRU) segment. The DP-LRU 
segment evicts clean blocks first for giving reuse 
opportunity to dirty blocks. AWC can also determine 
the efficient size of DP-LRU segment for reducing the 
number of writebacks according to memory access 
patterns of programs. In the performance evaluation, 
we showed that AWC reduced the number of 
writebacks up to 29% and 46%, and saved the energy 
of a main memory system up to 23% and 49% in a 
single-core and multi-core, respectively. AWC also 
reduced the runtime by 1.5% and 3.2% on average 
compared to previous cache managements for non-
volatile main memory systems, in a single-core and a 
multi-core, respectively.    
 
Index Terms—Cache replacement policy, last-level 
cache, DP-LRU, adaptive writeback, non-volatile 
memory    

I. INTRODUCTION 

Non-volatile memory (NVM) has emerged as an 

alternative main memory due to advantages such as low 
energy consumption and high density. However, two 
major drawbacks must be considered for NVM-based 
main memory systems. First, NVM is generally 
asymmetry in latency and an energy cost in terms of 
reads and writes. Writes have much longer latency and 
higher energy consumption than those of reads. Second, 
NVM has the limited lifetime. For example, the write 
endurance of phase-change memory (PCM), as one of 
representative NVMs, is about 108 ~ 109, unlike the 
DRAM whose the write endurance is about 1015 [1]. To 
solve the problem of limited lifetime of PCM, wear 
leveling techniques such as Start-Gap [2], Security 
Refresh [3] and Multi-Way Wear Leveling [4] were 
proposed, which distributed write operations across 
whole PCM memory. Data-Comparison Write [5] and 
Flip-N-Write [6] were also proposed in order to reduce 
the number of write operations. However, these studies 
cannot prevent the frequent write operations according to 
the patterns of write operations.  

In this paper, to solve this problem, we propose 
Adaptive Writeback-aware Cache management (AWC) 
to extend the lifetime of NVM. The Last-Level Cache 
(LLC) in AWC is partitioned into Least Recently Used 
(LRU) segment and LRU using Dirty block Precedence 
(DP-LRU) segment, which considers a dirty bit as well 
as LRU bits for selecting a victim block. The DP-LRU 
segment evicts clean blocks (i.e., non-dirty) first for 
reducing the number of writebacks by giving reuse 
opportunity to dirty blocks. AWC can also determine the 
efficient size of DP-LRU segment for reducing the 
number of writebacks according to memory access 
patterns of programs. The rest of this paper is organized 
as follows. Section 2 presents background knowledge 
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and related works. Section 3 proposes cache replacement 
policy of AWC and cache partition mechanism. Section 4 
evaluates the performance of AWC compared with others. 
Section 5 concludes the paper. 

II. BACKGROUND AND RELATED WORKS 

1. Background 
 
Recently, there has been a lot of discussion about 

replacing main memory from DRAM to NVM [2-10]. 
The NVMs have higher density and less energy 
consumption compare to DRAMs. Table 1 compares 
characteristics of memory technologies in terms of 
density, endurance, speed of read and write operations [1, 
11-13]. 

As representative NVMs, there are STT-RAM, 
FeRAM, RRAM and PCM as well as conventional 
NAND/NOR Flash NVMs. Among them, PCM is the 
most suitable for replacing DRAM because of its 
integration density for large capacity and its read/write 
operation time which is similar to that of DRAM. 
However, as in all NVMs, PCM also suffered from the 
limited number of write operations and the asymmetric 
speed of read and write operations. Therefore, for 
DRAM alternatives, the lifetime management and the 
handling asymmetric operations of PCM have to be 
considered.  

Meanwhile, PCM is an NVM that stores data by using 
a characteristic of resistance differences between 
crystalline with row-resistance and amorphous with high-
resistance. Fig. 1 shows a cell structure of PCM. In the 
PCM, storing data is done by RESET and SET 
operations. RESET operation is to make physical state 
amorphous by heating the phase change material to high 
temperature over 600℃. SET operation is to make 

physical state crystalline by heating the phase change 
material to lower temperature than that of RESET. Fig. 2 
shows the current pulses of the SET and RESET in PCM 
with respect to time line. 

 
2. Related Works 

 
Until now, to increase the performance efficiency of 

cache and main memory systems, cache replacement 
policies have been mostly focused on conventional main 
memory systems using DRAM only [14]. These studies 

Table 1. Memory technologies of various NVMs 

 Cell Size(F2) Endurance(Cycle) Read Time(ns) Write Time(ns) Volatility 
SRAM 150 - 2 2 Volatile 
DRAM 10 1015 20 20 Volatile 

STT-MRAM 20 1015 5 5-30 Non-Volatile 
NAND-Flash 4 104 105 106 Non-Volatile 
NOR-Flash 10 105 15 103 Non-Volatile 

FeRAM 22 1012 40 65 Non-Volatile 
RRAM 30 105 100 100 Non-Volatile 
PCM 4 109 12 100 Non-Volatile 
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Fig. 1. Cell structure of PCM. 
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Fig. 2. Current pulses of SET and RESET in PCM. 
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mainly exploited the patterns of write operations to 
increase cache hit ratio. However, cache replacement 
policies for non-volatile main memory systems have 
been increasingly studied recently. NVM-based main 
memory systems must manage write operations for 
increasing the performance and prolonging the lifetime 
of NVM systems. Meanwhile, writebacks of LLC result 
in a number of write operations to NVM-based main 
memory systems. Therefore, cache management schemes 
have been proposed for reducing the number of 
writebacks to NVM and the following shows 
representative techniques of managing cache blocks for 
NVM-based main memory systems. 

N-Chance can extend the lifetime of NVM by early 
eviction of non-dirty blocks. N-Chance selects the oldest 
clean block as a victim block among N blocks from 
LRU-side [7]. If there is no clean block among N blocks 
from LRU-side, a dirty block placed in LRU is selected 
as a victim block for replacement. While N-Chance 
reduced the number of writebacks, it is vulnerable to 
pattern changes in programs by using a static parameter.  

Writeback-Aware Dynamic CachE (WADE) keeps 
dirty blocks in LLC by using two lists which are frequent 
and non-frequent writeback lists, respectively, for 
reusing dirty blocks [9]. WADE predicts write-intensive 
blocks which accordingly result in frequent writebacks 
into memory. These blocks are managed by the two lists, 
and WADE tries to keep the best size of each list to 

obtain high hit ratio of dirty blocks.  
Adaptive and Combined Wear-out-Aware Replace- 

ment (AC-WAR) finds dirty blocks to stay in the cache 
by tracking sub-block modification [10]. AC-WAR can 
reduce the number of bit-flips of NVM by selecting the 
least modified block as a victim block in Least Modified 
block First (LMF) policy. However, AC-WAR had the 
capacity overhead for tracking sub-block modification in 
whole blocks. 

III. ADAPTIVE WRITEBACK-AWARE CACHE 

MANAGEMENT 

1. Cache Replacement Policy for AWC 
 

The proposed cache management policy, called AWC, 
helps to improve the lifetime extension of NVM-based 
main memory systems by reducing the number of 
writebacks. Fig. 3 shows the structure of the proposed 
AWC in w-way set-associative LLC. The LLC of 
proposed scheme is partitioned into two segments, which 
use LRU and DP-LRU policy and are called as LRU 
segment and DP-LRU segment, respectively. AWC can 
reduce the number of writebacks, which results in the 
extension of the lifetime of NVM, by the early eviction 
of clean blocks placed in way positions where have low 
hit ratio of clean blocks. On the other hand, dirty blocks 
are moved to DP-LRU segment. The DP-LRU segment 
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Fig. 3. The structure of adaptive writeback-aware cache management. 
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gives dirty blocks the precedence for reusing these 
blocks.  

Fig. 4 shows the segmentation of the LLC for a given 
set. When a new block is inserted, the block placed in 
LRU position in the LRU segment is evicted. If the 
evicted block is dirty, the block is moved to DP-LRU 
segment (Case ①). Otherwise, a clean block is evicted 
directly with no migration (Case ②). When a block is 
hit in the LLC, the block is moved to MRU position in 
the LRU segment, and then other blocks are shifted to 
LRU position. Finally, the block of LRU position is 
moved to DP-LRU segment, and the positions of whole 
blocks in DP-LRU segment are adjusted according to 
whether dirty (Case ③) or not (Case ④) 

Fig. 5 shows the example of AWC assuming a mixed 
access pattern. When a new block i is inserted, a dirty 
block d is moved to DP-LRU segment. In second step, a 
clean block c placed in LRU position is evicted. When a 
block is hit in LLC, the block placed in LRU is moved to 
DP-LRU segment without considering whether dirty or 
not. In step 3, 5 and 6, the block placed in LRU position 

is moved to DP-LRU segment. However, the position of 
whole blocks in DP-LRU segment can be adjusted 
according to DP-LRU policy. For example, the positions 
of the block a and the block j, which are clean in step 5 
and step 6 respectively, are adjusted by DP-LRU policy. 
This position adjustment enables that dirty blocks can 
stay longer than clean blocks in LLC. 

 
2. Cache Way Partition for AWC 

 
AWC determines the efficient size of DP-LRU 

segment. To find optimal cache partitioning size between 
LRU and DP-LRU, AWC exploits the hit predictor and 
the cache way partition logic, which are presented as a 
gray color in Fig. 3, and AWC observes the hit 
information for each way during a given period of time. 
The hit predictor stores the tags of both dirty and clean 
blocks evicted from the LLC and observes whether the 
tag is hit or not. AWC increases or decreases the size of 
DP-LRU segment based on this observation results. To 
observe the hit of tags obtained in the evicted blocks, the 
hit predictor has Tag Queue for Dirty Blocks (TQDB) 
and Tag Buffer for Clean Blocks (TBCB). TQDB inserts 
tags of dirty blocks, which are evicted from LLC, to 
observe the reuse of dirty blocks by assuming additional 
ways for these blocks. TBCB inserts tags of clean blocks, 
which are evicted from LLC, to observe the reuse of 
clean blocks by assuming additional ways for these 
blocks. That means TBCB monitors the efficiency of DP-
LRU segment. Note that this observation uses sampled 
sets, e.g., our evaluation uses the sampled 128 sets 
among 2048 sets. 

Increasing the size of DP-LRU segment is calculated 
as follows: 

 

 1

1 1 1 1

{ | 0}
x G x G

n s n
g g

n g n g

w x TQDB LRU - -

= = = =

= - ³åå åå  (1) 

 1 max( )p p
size sizeDPLRU DPLRU w-= +  (2) 

 
where TQDBn

g is the hit counts for nth way of gth 
sampled set in TQDB. LRUg

n is hit counts of clean 
blocks for nth way of gth sampled set in LRU segment. G 
is the total number of the sampled sets and s is the size of 
LRU segment. DPLRUp

size is size of DP-LRU at pth. Eq. 
(1) calculates the gain of the hit when additional ways 
are allowed for dirty blocks. The max(W), which satisfies 
the Eq. (1), is selected as the number of additional ways 
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Fig. 4. Segmentation of last-level cache. 
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Fig. 5. The example scenario of AWC. 
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for the updated size of DP-LRU segment (Eq. (2)). Fig. 
6(a) shows the example of increasing the size of DP-
LRU segment. After reaching a given period of time for 
monitoring the hit prediction, AWC first proceeds an 
increasing process of the number of DP-LRU segments. 
When the increased number of hits of dirty blocks due to 
the addition of the DP-LRU segment is greater than the 
reduced number of hits of clean blocks because of the 
reduction of LRU segment, AWC increases the size of 
DP-LRU. As shown in Fig. 6(a), the number of dirty 
block hits in the first way of TQDB which monitors the 
hit counts under the assumption of additional ways for 
DP-LRU is greater than that of clean block hits in the last 
way of LRU segment. However, the sum up to the 
second way in TQDB (312+85) is less than the sum from 
the last way to next of LRU segment (211+262). 
Therefore, AWC increase the size of DP-LRU segment 
by one way. 

Decreasing the size of DP-LRU segment is determined 
as follows: 

 

 
1 1

0
G G

g g
g g

TBCB DPLRU
= =

- ³å å  (3) 

 1 1p p
size sizeDPLRU DPLRU -= -  (4) 

 
where TBCBg is the hit counts for gth sampled set in 
TBCB and DPLRUg is hit count of dirty blocks for gth 
sampled set in the last way of DP-LRU segment. Note 
that we monitor the last way in each set to prevent 
decreasing the ways for dirty blocks too quickly. When 

the hit ratio of the last way in DP-LRU segment is 
smaller than that of TBCB (Eq. (3)), the size of DP-LRU 
segment is decreased (Eq. (4)). Fig. 6(b) shows the 
example of decreasing the size of DP-LRU segment. 
When the increase condition of DP-LRU is not qualified, 
AWC proceeds with the reduction procedure. This 
procedure checks the hit efficiency of the last way in DP-
LRU. In Fig. 6(b), the hit count for dirty blocks in the 
last way of DP-LRU (121) is less than the hit count for 
TBCB (248). This means that the overall hit rate drops 
due to DP-LRU, so AWC reduces the size of DP-LRU by 
one way.  

IV. PERFORMANCE EVALUATION 

We used GEM5 simulator [15] to evaluate the 
performance of AWC. Table 2 shows the experiment 
parameters used in GEM5 simulator. We use energy 
parameters of PCM as from [16]. We used SPEC CPU 
2006 benchmarks [17] to evaluate our proposal. In case 
of single-core performance evaluation, we divided 
benchmarks into three groups according to the ratio of 

Hit counts for TQDB in hit predictor

831 649 411 264 211 262

Hit counts for clean blocks in LRU 

312 85 71 88 62 92 77 65

+1

96 176 Hit count for TBCB 
in hit predictor

Hit count for dirty blocks 
in last way of DP-LRU 

LRUMRU LRUMRU

 

(a) 
 

Hit counts for TQDB in hit predictor

996 864 564 426 321

Hit counts for clean blocks in LRU 

65 59 72 84 42 56 49 16

-1

121 248 Hit count for TBCB 
in hit predictor

Hit count for dirty blocks 
in last way of DP-LRU 

LRUMRU LRUMRU

 

(b) 

Fig. 6. The example of cache way partition logic (a) Increasing 
the number of DP-LRU segment, (b) Decreasing the number of 
DP-LRU segment. 
 

Table 2. Details of experiment environment. 

CPU 3 GHz, 1-core/4-core 

L1 instruction 32 KB, 4-way, 64B line, 2 cycle latency, 
private 

L1 data 32 KB, 4-way, 64B line, 2 cycle latency, 
private 

L2 2 MB/1-core, 8MB/2-core, 16-way, 64B line,  
20 cycle latency, shared 

Memory 
(PCM) 

4 GB 
Array read energy = 2.47 pJ/bit 
Array write energy = 16.82 pJ/bit 
Row buffer read energy = 0.93 pJ/bit 
Row buffer write energy = 1.02 pJ/bit 

 
Table 3. Benchmark programs. 

light astar, h264ref, omnetpp, provray, tonto 
middle calculix, gobmk, namd, sjeng, sphinx3 1-core 

high bwaves, bzip2, lbm, mcf, soplex 
Mix1 bzip2,soplex,bwaves,calculix 
Mix2 astar,povray,hmmer,soplex 
Mix3 bzip2,soplex,hmmer,h264ref 
Mix4 povray,libquantum,calculix,sphinx3 
Mix5 soplex,astar,bzip2,bzip2 
Mix6 libquantum,mcf,hmmer,povray 
Mix7 mcf, sjeng, soplex, povray 
Mix8 omnetpp,bwaves,mcf,sphinx3 
Mix9 omnetpp,bzip2,mcf,soplex 

4-core 

Mix10 mcf,mcf,astar,bzip2 
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writebacks. To evaluate the performance of multi-core 
environment, we used 10 application-mixes. Table 3 
shows the used benchmarks in this paper. We evaluated 
the performance of AWC compared with baseline (LRU), 
N-Chance (N=8) and AC-WAR (d=1, 3, 5) in terms of 
the number of writebacks, energy consumption and 
runtime. For accuracy in the evaluation, we ran one 
billion instructions after fast forwarding of one billion 
instructions. The monitoring period of AWC is one 
hundred thousand cycles.  

Algorithm 1 shows the overall of the cache way 
partition algorithm which is about increasing or 
decreasing the size of DP-LRU segment mentioned 
above. First, AWC compares the hit counts of the tags of 
TQDB with the hit counts of clean blocks in LRU 
segment (line 4-12). If there is a section having higher hit 
counts of TQDB than those of clean blocks in LRU 
segment, AWC increases the size of DP-LRU segment 
by those amounts (line 7-8). When there is no section to 
increase the size of DP-LRU segment, AWC checks the 
efficiency of the current DP-LRU segment (line 13-17). 
If the hit count of the last way in DP-LRU segment is 
less than that of TBCB, AWC reduces the size of the DP-
LRU segment by one to resolve the problem in which the 
overall hit rate drops (line 14-15). 

1. Evaluation for Single-core System 
 
Fig. 7 shows the normalized number of writebacks. 

The number of writebacks is closely related to the 
lifetime of NVM-based main memory systems. AC-
WAR reduces the number of writebacks by using LMF, 
which conducts an eviction of the least modified block 
first. However, in the benchmarks which have the light 
ratio of writebacks, AC-WAR has a low efficiency of 
LMF segment because of the lack of correlation between 
the writebacks and sub-blocks changed. However, AWC 
can reduce the number of writebacks due to the high 
reuse ratio of the dirty blocks. AWC reduced the number 
of writebacks from 4.2% to 29% compared to others. 

Fig. 8 shows the normalized energy consumption. The 
energy consumption is directly influenced by the number 
of main memory accesses. In particular, write operations 
need more energy than read operations. Therefore 
reducing the number of writebacks also positively affects 
the energy consumption as well as the lifetime of NVM-
based main memory systems. By reducing the number of 
writebacks effectively, AWC reduced the energy 
consumption from 6% to 23%, due to the high reuse ratio 
of the dirty blocks compared to others. 

Fig. 9 shows the normalized runtime. By providing 
higher hit ratio of the dirty blocks, the number of 
writebacks was reduced in AWC. However, there is a 
possibility that the hit ratio of clean blocks is decreased 
on the contrary. In this case, the overall runtime of the 
entire system may differ depending on applications. 
Typically, the runtime may increase in read-intensive 
applications (light), while it may decrease in write-
intensive applications (high) which can reduce the 
number of writebacks. In AC-WAR, it had difference 
runtime depending on the value of d, because the small 
value of d resulted in a deteriorated runtime by the 
degradation of hit ratio. However, our proposal can 
reduce the runtime or, at least, keep it similar to that of 
LRU, due to determine the efficient cache partition size 
depending on the writeback pattern of benchmarks. 
AWC reduced the runtime by 1.5% on average compared 
to others.  

 
2. Evaluation for Multi-core System  

 
In this section, we simulate AWC in a multi-core 

Algorithm 1: Cache way partitioning 
Input : partitionPospresent(Size of LRU), TQDB, 
TBCB, DPLRU 
Output : PartitionPospresent 

1 PosLRU ← PartitionPospresent 
2 PosTQDB ← 0 
3 PartitionPosprvios ← PartitionPospresent 
4 while  PosLRU  >  0 do  
5    Gain += TQDB.HitCount[PosTQDB] 
6 Loss += LRU.CleanBlkHitCount[PosLRU - 1] 
7    if Gain ≥ Loss then 
8       PartitionPosprvios ← PosLRU 
9 end if 

10 PosLRU ← PosLRU  - 1 
11 PosTQDB ← PosTQDB + 1 
12 end while 
13 if PartitionPosprvios = PartitionPospresent then 

14 if DPLRU.LastWayHitCount  
≤ TBCB.HitCount  then 

15        PartitionPospresent ← PartitionPospresent +1 
16    end if 
17 end if 

 
 



520 SANG-HO HWANG et al : ADAPTIVE WRITEBACK-AWARE CACHE MANAGEMENT POLICY FOR LIFETIME EXTENSION OF … 

 

configuration which has a 4-core with an 8MB 16-way 
associative LLC. Fig. 10 shows the normalized number 
of writebacks in multi-core applications. In multi-core 
configuration, the hit ratio of dirty blocks in LLC differs 
for each application. AC-WAR provided a low 
performance in terms of writeback reduction in some 
applications, such as bwaves and sjeng, which show a 
low correlation between the writebacks and sub-blocks 
changed. However, AWC can reduce the number of 

writebacks due to the adaptive determination of the 
efficient size of DP-LRU segment, in most applications. 
AWC reduced the number of writebacks from 13.5% to 
46% compared to others. 

Fig. 11 shows the normalized energy consumption in 
multicore applications. As the results in single-core 
applications, AWC can save energy of main memory by 
reducing the number of write operations which need 
more energy than that of read operations. As shown in 
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Fig. 7. Normalized number of writebacks in single-core application. 
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Fig. 8. Normalized energy consumption in single-core application. 
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Fig. 9. Normalized runtime in single-core application. 
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Fig. 11. AWC can reduce the energy consumption of 
PCM-based main memory systems from 8% to 49% 
compared to others. 

Fig. 12 shows the normalized runtime in multi-core 
applications. As mentioned earlier, the runtime is related 
to the hit ratio of both dirty blocks and clean blocks. As 

the result in the single-core applications, AWC can 
reduce the runtime or keep it similar to that of LRU in 
the multi-core application environment as well. AWC 
achieves the reduction of the runtime by 3.2% on average 
compared with other policies.  

V. CONCLUSIONS 

In this paper, we proposed AWC for NVM-based main 
memory systems. The LLC in AWC is partitioned into 
LRU segment and DP-LRU segment. The DP-LRU 
segment evicts clean blocks first for giving reuse 
opportunity to dirty blocks. AWC can reduce the number 
of writebacks by the adaptive cache partition according 
to the memory access patterns of programs. In 
experimental part, we evaluated the performance of 
AWC and showed that AWC reduced the number of 
writebacks up to 29% and 46%, and saved the energy 
consumption of the main memory system up to 23% and 
49% in a single-core and multi-core, respectively. AWC 
also reduced the runtime by 1.5% and 3.2% in the single-
core and the multi-core, respectively. 
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