
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.4, AUGUST, 2017 ISSN(Print) 1598-1657
https://doi.org/10.5573/JSTS.2017.17.4.514 ISSN(Online) 2233-4866

Manuscript received Jan. 25, 2017; accepted Jul. 5, 2017
1 Department of Computer Engineering, Yeungnam University,
Gyeongsan, Korea
2 Department of Computer Science and Engineering, Seoul National
University, Seoul, Korea
E-mail : kwak@yu.ac.kr

Adaptive Writeback-aware Cache Management Policy
for Lifetime Extension of Non-volatile Memory

Sang-Ho Hwang1, Ju Hee Choi2, and Jong Wook Kwak1,*

Abstract—In this paper, we propose Adaptive
Writeback-aware Cache management (AWC) to
prolong the lifetime of non-volatile main memory
systems by reducing the number of writebacks. The
last-level cache in AWC is partitioned into Least
Recently Used (LRU) segment and LRU using Dirty
block Precedence (DP-LRU) segment. The DP-LRU
segment evicts clean blocks first for giving reuse
opportunity to dirty blocks. AWC can also determine
the efficient size of DP-LRU segment for reducing the
number of writebacks according to memory access
patterns of programs. In the performance evaluation,
we showed that AWC reduced the number of
writebacks up to 29% and 46%, and saved the energy
of a main memory system up to 23% and 49% in a
single-core and multi-core, respectively. AWC also
reduced the runtime by 1.5% and 3.2% on average
compared to previous cache managements for non-
volatile main memory systems, in a single-core and a
multi-core, respectively.

Index Terms—Cache replacement policy, last-level
cache, DP-LRU, adaptive writeback, non-volatile
memory

I. INTRODUCTION

Non-volatile memory (NVM) has emerged as an

alternative main memory due to advantages such as low
energy consumption and high density. However, two
major drawbacks must be considered for NVM-based
main memory systems. First, NVM is generally
asymmetry in latency and an energy cost in terms of
reads and writes. Writes have much longer latency and
higher energy consumption than those of reads. Second,
NVM has the limited lifetime. For example, the write
endurance of phase-change memory (PCM), as one of
representative NVMs, is about 108 ~ 109, unlike the
DRAM whose the write endurance is about 1015 [1]. To
solve the problem of limited lifetime of PCM, wear
leveling techniques such as Start-Gap [2], Security
Refresh [3] and Multi-Way Wear Leveling [4] were
proposed, which distributed write operations across
whole PCM memory. Data-Comparison Write [5] and
Flip-N-Write [6] were also proposed in order to reduce
the number of write operations. However, these studies
cannot prevent the frequent write operations according to
the patterns of write operations.

In this paper, to solve this problem, we propose
Adaptive Writeback-aware Cache management (AWC)
to extend the lifetime of NVM. The Last-Level Cache
(LLC) in AWC is partitioned into Least Recently Used
(LRU) segment and LRU using Dirty block Precedence
(DP-LRU) segment, which considers a dirty bit as well
as LRU bits for selecting a victim block. The DP-LRU
segment evicts clean blocks (i.e., non-dirty) first for
reducing the number of writebacks by giving reuse
opportunity to dirty blocks. AWC can also determine the
efficient size of DP-LRU segment for reducing the
number of writebacks according to memory access
patterns of programs. The rest of this paper is organized
as follows. Section 2 presents background knowledge

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.4, AUGUST, 2017 515

and related works. Section 3 proposes cache replacement
policy of AWC and cache partition mechanism. Section 4
evaluates the performance of AWC compared with others.
Section 5 concludes the paper.

II. BACKGROUND AND RELATED WORKS

1. Background

Recently, there has been a lot of discussion about

replacing main memory from DRAM to NVM [2-10].
The NVMs have higher density and less energy
consumption compare to DRAMs. Table 1 compares
characteristics of memory technologies in terms of
density, endurance, speed of read and write operations [1,
11-13].

As representative NVMs, there are STT-RAM,
FeRAM, RRAM and PCM as well as conventional
NAND/NOR Flash NVMs. Among them, PCM is the
most suitable for replacing DRAM because of its
integration density for large capacity and its read/write
operation time which is similar to that of DRAM.
However, as in all NVMs, PCM also suffered from the
limited number of write operations and the asymmetric
speed of read and write operations. Therefore, for
DRAM alternatives, the lifetime management and the
handling asymmetric operations of PCM have to be
considered.

Meanwhile, PCM is an NVM that stores data by using
a characteristic of resistance differences between
crystalline with row-resistance and amorphous with high-
resistance. Fig. 1 shows a cell structure of PCM. In the
PCM, storing data is done by RESET and SET
operations. RESET operation is to make physical state
amorphous by heating the phase change material to high
temperature over 600℃. SET operation is to make

physical state crystalline by heating the phase change
material to lower temperature than that of RESET. Fig. 2
shows the current pulses of the SET and RESET in PCM
with respect to time line.

2. Related Works

Until now, to increase the performance efficiency of

cache and main memory systems, cache replacement
policies have been mostly focused on conventional main
memory systems using DRAM only [14]. These studies

Table 1. Memory technologies of various NVMs

 Cell Size(F2) Endurance(Cycle) Read Time(ns) Write Time(ns) Volatility
SRAM 150 - 2 2 Volatile
DRAM 10 1015 20 20 Volatile

STT-MRAM 20 1015 5 5-30 Non-Volatile
NAND-Flash 4 104 105 106 Non-Volatile
NOR-Flash 10 105 15 103 Non-Volatile

FeRAM 22 1012 40 65 Non-Volatile
RRAM 30 105 100 100 Non-Volatile
PCM 4 109 12 100 Non-Volatile

To
p

El
ec

tro
de

Ph
as

e
C

ha
ng

e
M

at
er

ia
l

B
ot

to
m

 E
le

ct
ro

de

H
ea

te
r

BL(Bit Line)

W
L(

W
or

d
Li

ne
)

Fig. 1. Cell structure of PCM.

RESET current pulse

SET current pulse

time

current

RESETmin

SETmin

RESETmin SETmin

Fig. 2. Current pulses of SET and RESET in PCM.

516 SANG-HO HWANG et al : ADAPTIVE WRITEBACK-AWARE CACHE MANAGEMENT POLICY FOR LIFETIME EXTENSION OF …

mainly exploited the patterns of write operations to
increase cache hit ratio. However, cache replacement
policies for non-volatile main memory systems have
been increasingly studied recently. NVM-based main
memory systems must manage write operations for
increasing the performance and prolonging the lifetime
of NVM systems. Meanwhile, writebacks of LLC result
in a number of write operations to NVM-based main
memory systems. Therefore, cache management schemes
have been proposed for reducing the number of
writebacks to NVM and the following shows
representative techniques of managing cache blocks for
NVM-based main memory systems.

N-Chance can extend the lifetime of NVM by early
eviction of non-dirty blocks. N-Chance selects the oldest
clean block as a victim block among N blocks from
LRU-side [7]. If there is no clean block among N blocks
from LRU-side, a dirty block placed in LRU is selected
as a victim block for replacement. While N-Chance
reduced the number of writebacks, it is vulnerable to
pattern changes in programs by using a static parameter.

Writeback-Aware Dynamic CachE (WADE) keeps
dirty blocks in LLC by using two lists which are frequent
and non-frequent writeback lists, respectively, for
reusing dirty blocks [9]. WADE predicts write-intensive
blocks which accordingly result in frequent writebacks
into memory. These blocks are managed by the two lists,
and WADE tries to keep the best size of each list to

obtain high hit ratio of dirty blocks.
Adaptive and Combined Wear-out-Aware Replace-

ment (AC-WAR) finds dirty blocks to stay in the cache
by tracking sub-block modification [10]. AC-WAR can
reduce the number of bit-flips of NVM by selecting the
least modified block as a victim block in Least Modified
block First (LMF) policy. However, AC-WAR had the
capacity overhead for tracking sub-block modification in
whole blocks.

III. ADAPTIVE WRITEBACK-AWARE CACHE

MANAGEMENT

1. Cache Replacement Policy for AWC

The proposed cache management policy, called AWC,
helps to improve the lifetime extension of NVM-based
main memory systems by reducing the number of
writebacks. Fig. 3 shows the structure of the proposed
AWC in w-way set-associative LLC. The LLC of
proposed scheme is partitioned into two segments, which
use LRU and DP-LRU policy and are called as LRU
segment and DP-LRU segment, respectively. AWC can
reduce the number of writebacks, which results in the
extension of the lifetime of NVM, by the early eviction
of clean blocks placed in way positions where have low
hit ratio of clean blocks. On the other hand, dirty blocks
are moved to DP-LRU segment. The DP-LRU segment

TQDB

Hit Predictor Cache Way Partition Logic

LRU segment DP-LRU segment

set datatag datatag datatag datatag datatag

way 1 way 2 way  way +1 way ⋯
0

n - 1

⋯

Hit counters of TQDB Hit counters of LRU

Hit counter of TBCB Hit counter of last way
in DP-LRU

… …

… …

TQDB : Tag Queue for Dirty Blocks TBCB : Tag Buffer for Clean Blocks

TQDB TBCB

+/-

① ②

③

… …⋯ ⋯
⑤ ④

Data flows

① Dirty block’s tag
= 0 (mod 16)

② Clean block’s tag
= 0 (mod 16)

③ Hit information of
TQDB and TBCB

④ Hit information of
LRU and DP-LRU
[sampled set number
= 0 (mod 16)]

⑤ Cache way
partition decision(+/-)

datatag

way 3

…

1
2

Fig. 3. The structure of adaptive writeback-aware cache management.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.4, AUGUST, 2017 517

gives dirty blocks the precedence for reusing these
blocks.

Fig. 4 shows the segmentation of the LLC for a given
set. When a new block is inserted, the block placed in
LRU position in the LRU segment is evicted. If the
evicted block is dirty, the block is moved to DP-LRU
segment (Case ①). Otherwise, a clean block is evicted
directly with no migration (Case ②). When a block is
hit in the LLC, the block is moved to MRU position in
the LRU segment, and then other blocks are shifted to
LRU position. Finally, the block of LRU position is
moved to DP-LRU segment, and the positions of whole
blocks in DP-LRU segment are adjusted according to
whether dirty (Case ③) or not (Case ④)

Fig. 5 shows the example of AWC assuming a mixed
access pattern. When a new block i is inserted, a dirty
block d is moved to DP-LRU segment. In second step, a
clean block c placed in LRU position is evicted. When a
block is hit in LLC, the block placed in LRU is moved to
DP-LRU segment without considering whether dirty or
not. In step 3, 5 and 6, the block placed in LRU position

is moved to DP-LRU segment. However, the position of
whole blocks in DP-LRU segment can be adjusted
according to DP-LRU policy. For example, the positions
of the block a and the block j, which are clean in step 5
and step 6 respectively, are adjusted by DP-LRU policy.
This position adjustment enables that dirty blocks can
stay longer than clean blocks in LLC.

2. Cache Way Partition for AWC

AWC determines the efficient size of DP-LRU

segment. To find optimal cache partitioning size between
LRU and DP-LRU, AWC exploits the hit predictor and
the cache way partition logic, which are presented as a
gray color in Fig. 3, and AWC observes the hit
information for each way during a given period of time.
The hit predictor stores the tags of both dirty and clean
blocks evicted from the LLC and observes whether the
tag is hit or not. AWC increases or decreases the size of
DP-LRU segment based on this observation results. To
observe the hit of tags obtained in the evicted blocks, the
hit predictor has Tag Queue for Dirty Blocks (TQDB)
and Tag Buffer for Clean Blocks (TBCB). TQDB inserts
tags of dirty blocks, which are evicted from LLC, to
observe the reuse of dirty blocks by assuming additional
ways for these blocks. TBCB inserts tags of clean blocks,
which are evicted from LLC, to observe the reuse of
clean blocks by assuming additional ways for these
blocks. That means TBCB monitors the efficiency of DP-
LRU segment. Note that this observation uses sampled
sets, e.g., our evaluation uses the sampled 128 sets
among 2048 sets.

Increasing the size of DP-LRU segment is calculated
as follows:

 1

1 1 1 1

{ | 0}
x G x G

n s n
g g

n g n g

w x TQDB LRU - -

= = = =

= - ³åå åå (1)

 1 max()p p
size sizeDPLRU DPLRU w-= + (2)

where TQDBn

g is the hit counts for nth way of gth
sampled set in TQDB. LRUg

n is hit counts of clean
blocks for nth way of gth sampled set in LRU segment. G
is the total number of the sampled sets and s is the size of
LRU segment. DPLRUp

size is size of DP-LRU at pth. Eq.
(1) calculates the gain of the hit when additional ways
are allowed for dirty blocks. The max(W), which satisfies
the Eq. (1), is selected as the number of additional ways

•••

Insertion

Hit promotion

LRU
DP-LRU Eviction

MRU LRU MRU LRU

Eviction

①

②

③

④

Fig. 4. Segmentation of last-level cache.

a b c d e f g h

LRU DP-LRU

i a b c d e f g

Initial state

1 Prefetch i

j i a b d e f g2 Prefetch j

f j i a b d e g3 Write f

i f j a b d e g4 Read i

e i f j b d g a5 Read e

g e i f b d j a6 Write g

MRU LRU MRU LRU

k g e i f b d j7 Prefetch k

Clean Block Dirty Block

Time

①

②

③

④

③

①

Fig. 5. The example scenario of AWC.

518 SANG-HO HWANG et al : ADAPTIVE WRITEBACK-AWARE CACHE MANAGEMENT POLICY FOR LIFETIME EXTENSION OF …

for the updated size of DP-LRU segment (Eq. (2)). Fig.
6(a) shows the example of increasing the size of DP-
LRU segment. After reaching a given period of time for
monitoring the hit prediction, AWC first proceeds an
increasing process of the number of DP-LRU segments.
When the increased number of hits of dirty blocks due to
the addition of the DP-LRU segment is greater than the
reduced number of hits of clean blocks because of the
reduction of LRU segment, AWC increases the size of
DP-LRU. As shown in Fig. 6(a), the number of dirty
block hits in the first way of TQDB which monitors the
hit counts under the assumption of additional ways for
DP-LRU is greater than that of clean block hits in the last
way of LRU segment. However, the sum up to the
second way in TQDB (312+85) is less than the sum from
the last way to next of LRU segment (211+262).
Therefore, AWC increase the size of DP-LRU segment
by one way.

Decreasing the size of DP-LRU segment is determined
as follows:

1 1

0
G G

g g
g g

TBCB DPLRU
= =

- ³å å (3)

 1 1p p
size sizeDPLRU DPLRU -= - (4)

where TBCBg is the hit counts for gth sampled set in
TBCB and DPLRUg is hit count of dirty blocks for gth
sampled set in the last way of DP-LRU segment. Note
that we monitor the last way in each set to prevent
decreasing the ways for dirty blocks too quickly. When

the hit ratio of the last way in DP-LRU segment is
smaller than that of TBCB (Eq. (3)), the size of DP-LRU
segment is decreased (Eq. (4)). Fig. 6(b) shows the
example of decreasing the size of DP-LRU segment.
When the increase condition of DP-LRU is not qualified,
AWC proceeds with the reduction procedure. This
procedure checks the hit efficiency of the last way in DP-
LRU. In Fig. 6(b), the hit count for dirty blocks in the
last way of DP-LRU (121) is less than the hit count for
TBCB (248). This means that the overall hit rate drops
due to DP-LRU, so AWC reduces the size of DP-LRU by
one way.

IV. PERFORMANCE EVALUATION

We used GEM5 simulator [15] to evaluate the
performance of AWC. Table 2 shows the experiment
parameters used in GEM5 simulator. We use energy
parameters of PCM as from [16]. We used SPEC CPU
2006 benchmarks [17] to evaluate our proposal. In case
of single-core performance evaluation, we divided
benchmarks into three groups according to the ratio of

Hit counts for TQDB in hit predictor

831 649 411 264 211 262

Hit counts for clean blocks in LRU

312 85 71 88 62 92 77 65

+1

96 176 Hit count for TBCB
in hit predictor

Hit count for dirty blocks
in last way of DP-LRU

LRUMRU LRUMRU

(a)

Hit counts for TQDB in hit predictor

996 864 564 426 321

Hit counts for clean blocks in LRU

65 59 72 84 42 56 49 16

-1

121 248 Hit count for TBCB
in hit predictor

Hit count for dirty blocks
in last way of DP-LRU

LRUMRU LRUMRU

(b)

Fig. 6. The example of cache way partition logic (a) Increasing
the number of DP-LRU segment, (b) Decreasing the number of
DP-LRU segment.

Table 2. Details of experiment environment.

CPU 3 GHz, 1-core/4-core

L1 instruction 32 KB, 4-way, 64B line, 2 cycle latency,
private

L1 data 32 KB, 4-way, 64B line, 2 cycle latency,
private

L2 2 MB/1-core, 8MB/2-core, 16-way, 64B line,
20 cycle latency, shared

Memory
(PCM)

4 GB
Array read energy = 2.47 pJ/bit
Array write energy = 16.82 pJ/bit
Row buffer read energy = 0.93 pJ/bit
Row buffer write energy = 1.02 pJ/bit

Table 3. Benchmark programs.

light astar, h264ref, omnetpp, provray, tonto
middle calculix, gobmk, namd, sjeng, sphinx3 1-core

high bwaves, bzip2, lbm, mcf, soplex
Mix1 bzip2,soplex,bwaves,calculix
Mix2 astar,povray,hmmer,soplex
Mix3 bzip2,soplex,hmmer,h264ref
Mix4 povray,libquantum,calculix,sphinx3
Mix5 soplex,astar,bzip2,bzip2
Mix6 libquantum,mcf,hmmer,povray
Mix7 mcf, sjeng, soplex, povray
Mix8 omnetpp,bwaves,mcf,sphinx3
Mix9 omnetpp,bzip2,mcf,soplex

4-core

Mix10 mcf,mcf,astar,bzip2

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.4, AUGUST, 2017 519

writebacks. To evaluate the performance of multi-core
environment, we used 10 application-mixes. Table 3
shows the used benchmarks in this paper. We evaluated
the performance of AWC compared with baseline (LRU),
N-Chance (N=8) and AC-WAR (d=1, 3, 5) in terms of
the number of writebacks, energy consumption and
runtime. For accuracy in the evaluation, we ran one
billion instructions after fast forwarding of one billion
instructions. The monitoring period of AWC is one
hundred thousand cycles.

Algorithm 1 shows the overall of the cache way
partition algorithm which is about increasing or
decreasing the size of DP-LRU segment mentioned
above. First, AWC compares the hit counts of the tags of
TQDB with the hit counts of clean blocks in LRU
segment (line 4-12). If there is a section having higher hit
counts of TQDB than those of clean blocks in LRU
segment, AWC increases the size of DP-LRU segment
by those amounts (line 7-8). When there is no section to
increase the size of DP-LRU segment, AWC checks the
efficiency of the current DP-LRU segment (line 13-17).
If the hit count of the last way in DP-LRU segment is
less than that of TBCB, AWC reduces the size of the DP-
LRU segment by one to resolve the problem in which the
overall hit rate drops (line 14-15).

1. Evaluation for Single-core System

Fig. 7 shows the normalized number of writebacks.

The number of writebacks is closely related to the
lifetime of NVM-based main memory systems. AC-
WAR reduces the number of writebacks by using LMF,
which conducts an eviction of the least modified block
first. However, in the benchmarks which have the light
ratio of writebacks, AC-WAR has a low efficiency of
LMF segment because of the lack of correlation between
the writebacks and sub-blocks changed. However, AWC
can reduce the number of writebacks due to the high
reuse ratio of the dirty blocks. AWC reduced the number
of writebacks from 4.2% to 29% compared to others.

Fig. 8 shows the normalized energy consumption. The
energy consumption is directly influenced by the number
of main memory accesses. In particular, write operations
need more energy than read operations. Therefore
reducing the number of writebacks also positively affects
the energy consumption as well as the lifetime of NVM-
based main memory systems. By reducing the number of
writebacks effectively, AWC reduced the energy
consumption from 6% to 23%, due to the high reuse ratio
of the dirty blocks compared to others.

Fig. 9 shows the normalized runtime. By providing
higher hit ratio of the dirty blocks, the number of
writebacks was reduced in AWC. However, there is a
possibility that the hit ratio of clean blocks is decreased
on the contrary. In this case, the overall runtime of the
entire system may differ depending on applications.
Typically, the runtime may increase in read-intensive
applications (light), while it may decrease in write-
intensive applications (high) which can reduce the
number of writebacks. In AC-WAR, it had difference
runtime depending on the value of d, because the small
value of d resulted in a deteriorated runtime by the
degradation of hit ratio. However, our proposal can
reduce the runtime or, at least, keep it similar to that of
LRU, due to determine the efficient cache partition size
depending on the writeback pattern of benchmarks.
AWC reduced the runtime by 1.5% on average compared
to others.

2. Evaluation for Multi-core System

In this section, we simulate AWC in a multi-core

Algorithm 1: Cache way partitioning
Input : partitionPospresent(Size of LRU), TQDB,
TBCB, DPLRU
Output : PartitionPospresent

1 PosLRU ← PartitionPospresent
2 PosTQDB ← 0
3 PartitionPosprvios ← PartitionPospresent
4 while PosLRU > 0 do
5 Gain += TQDB.HitCount[PosTQDB]
6 Loss += LRU.CleanBlkHitCount[PosLRU - 1]
7 if Gain ≥ Loss then
8 PartitionPosprvios ← PosLRU
9 end if

10 PosLRU ← PosLRU - 1
11 PosTQDB ← PosTQDB + 1
12 end while
13 if PartitionPosprvios = PartitionPospresent then

14 if DPLRU.LastWayHitCount
≤ TBCB.HitCount then

15 PartitionPospresent ← PartitionPospresent +1
16 end if
17 end if

520 SANG-HO HWANG et al : ADAPTIVE WRITEBACK-AWARE CACHE MANAGEMENT POLICY FOR LIFETIME EXTENSION OF …

configuration which has a 4-core with an 8MB 16-way
associative LLC. Fig. 10 shows the normalized number
of writebacks in multi-core applications. In multi-core
configuration, the hit ratio of dirty blocks in LLC differs
for each application. AC-WAR provided a low
performance in terms of writeback reduction in some
applications, such as bwaves and sjeng, which show a
low correlation between the writebacks and sub-blocks
changed. However, AWC can reduce the number of

writebacks due to the adaptive determination of the
efficient size of DP-LRU segment, in most applications.
AWC reduced the number of writebacks from 13.5% to
46% compared to others.

Fig. 11 shows the normalized energy consumption in
multicore applications. As the results in single-core
applications, AWC can save energy of main memory by
reducing the number of write operations which need
more energy than that of read operations. As shown in

0

0.2

0.4

0.6

0.8

1

1.2

1.4

astar h264ref omnetpp povray tonto mean calculix gobmk namd sjeng sphinx3 mean bwaves bzip2 lbm mcf soplex mean mean

light middle high overall

N
o
rm

al
iz

ed

n
u
m

b
er

 o
f

w
ri
te

b
ac

ks
baseline N-Chance AC-WAR(d=5) AC-WAR(d=3) AC-WAR(d=1) AWC

Fig. 7. Normalized number of writebacks in single-core application.

0.2

0.4

0.6

0.8

1

1.2

astar h264ref omnetpp povray tonto mean calculix gobmk namd sjeng sphinx3 mean bwaves bzip2 lbm mcf soplex mean mean

light middle high overall

N
o
rm

al
iz

ed
 e

n
er

g
y

co
n
su

m
p
ti
o
n

baseline N-Chance AC-WAR(d=5) AC-WAR(d=3) AC-WAR(d=1) AWC

Fig. 8. Normalized energy consumption in single-core application.

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

astar h264ref omnetpp povray tonto mean calculix gobmk namd sjeng sphinx3 mean bwaves bzip2 lbm mcf soplex mean mean

light middle high overall

N
o
rm

al
iz

ed
 r

u
n
ti
m

e

baseline N-Chance AC-WAR(d=5) AC-WAR(d=3) AC-WAR(d=1) AWC

Fig. 9. Normalized runtime in single-core application.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.4, AUGUST, 2017 521

Fig. 11. AWC can reduce the energy consumption of
PCM-based main memory systems from 8% to 49%
compared to others.

Fig. 12 shows the normalized runtime in multi-core
applications. As mentioned earlier, the runtime is related
to the hit ratio of both dirty blocks and clean blocks. As

the result in the single-core applications, AWC can
reduce the runtime or keep it similar to that of LRU in
the multi-core application environment as well. AWC
achieves the reduction of the runtime by 3.2% on average
compared with other policies.

V. CONCLUSIONS

In this paper, we proposed AWC for NVM-based main
memory systems. The LLC in AWC is partitioned into
LRU segment and DP-LRU segment. The DP-LRU
segment evicts clean blocks first for giving reuse
opportunity to dirty blocks. AWC can reduce the number
of writebacks by the adaptive cache partition according
to the memory access patterns of programs. In
experimental part, we evaluated the performance of
AWC and showed that AWC reduced the number of
writebacks up to 29% and 46%, and saved the energy
consumption of the main memory system up to 23% and
49% in a single-core and multi-core, respectively. AWC
also reduced the runtime by 1.5% and 3.2% in the single-
core and the multi-core, respectively.

ACKNOWLEDGMENTS

This work was supported by the 2016 Yeungnam
University Research Grant.

REFERENCES

[1] Mittal, Sparsh, and Jeffrey S. Vetter. "A survey of
software techniques for using non-volatile
memories for storage and main memory systems."
IEEE Transactions on Parallel and Distributed
Systems, Vol.27, No.5, pp. 1537-1550, 2016.

[2] Qureshi, Moinuddin K., et al. "Enhancing lifetime
and security of PCM-based main memory with
start-gap wear leveling." Proceedings of the 42nd
Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 14-23, 2009.

[3] Seong, Nak Hee, Dong Hyuk Woo, and Hsien-Hsin
S. Lee. "Security refresh: prevent malicious wear-
out and increase durability for phase-change
memory with dynamically randomized address
mapping." ACM SIGARCH computer architecture
news, Vol. 38, No. 3, pp. 383-394, June 2010.

Fig. 10. Normalized number of writebacks in multi-core
application.

Fig. 11. Normalized energy consumption in multi-core
application.

Fig. 12. Normalized runtime in multi-core application.

522 SANG-HO HWANG et al : ADAPTIVE WRITEBACK-AWARE CACHE MANAGEMENT POLICY FOR LIFETIME EXTENSION OF …

[4] Yu, Hongliang, and Yuyang Du. "Increasing
Endurance and Security of Phase-Change Memory
with Multi-Way Wear-Leveling." IEEE Transactions
on Computers, Vol. 63, No. 5, pp. 1157-1168,
May 2014.

[5] Yang, Byung-Do, et al. "A low power phase-
change random access memory using a data-
comparison write scheme." 2007 IEEE
International Symposium on Circuits and Systems,
pp. 3014-3017, May 2007.

[6] Cho, Sangyeun, and Hyunjin Lee. "Flip-N-Write: a
simple deterministic technique to improve PRAM
write performance, energy and endurance." 2009
42nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 347-357, Dec
2009.

[7] Ferreira, Alexandre P., et al. "Increasing PCM main
memory lifetime." Proceedings of the conference
on design, automation and test in Europe. European
Design and Automation Association, pp. 914-919,
2010.

[8] Zhou, Miao, et al. "Writeback-aware partitioning
and replacement for last-level caches in phase
change main memory systems." ACM Transactions
on Architecture and Code Optimization (TACO),
Vol. 8, No. 4, Article No. 53, January 2012.

[9] Wang, Zhe, et al. "WADE: Writeback-aware
dynamic cache management for NVM-based main
memory system." ACM Transactions on
Architecture and Code Optimization (TACO), Vol.
10, No. 4, Article No. 51, December 2013.

[10] Abad, Pablo, et al. "AC-WAR: Architecting the
Cache Hierarchy to Improve the Lifetime of a Non-
Volatile Endurance-Limited Main Memory." IEEE
Transactions on Parallel and Distributed Systems,
Vol. 27, No. 1, pp.66-77, January 2016.

[11] Xia, Fei, et al. "A survey of phase change memory
systems." Journal of Computer Science and
Technology, Vol. 30, No. 1, pp. 121-144, January
2015.

[12] Torres, Lionel, et al. "Trends on the application of
emerging nonvolatile memory to processors and
programmable devices." 2013 IEEE International
Symposium on Circuits and Systems (ISCAS2013),
pp. 101-104, May 2013.

[13] Mittal, Sparsh, Jeffrey S. Vetter, and Dong Li. "A
survey of architectural approaches for managing

embedded DRAM and non-volatile on-chip
caches." IEEE Transactions on Parallel and
Distributed Systems, Vol. 26, No. 6, pp. 1524-1537,
June 2015.

[14] Jaleel, Aamer, et al. "High performance cache
replacement using re-reference interval prediction
(RRIP)." ACM SIGARCH Computer Architecture
News, Vol. 38. No. 3, pp. 60-71, June 2010.

[15] Binkert, Nathan, et al. "The gem5 simulator." ACM
SIGARCH Computer Architecture News, Vol.39,
No.2, pp.1-7, 2011.

[16] Lee, Benjamin C., et al. "Architecting phase change
memory as a scalable dram alternative." ACM
SIGARCH Computer Architecture News, Vol. 37.
No. 3,pp.2-13, 2009.

[17] J. L. Henning, “Spec cpu2006 benchmark
descriptions,” ACM SIGARCH Computer
Architecture News, Vol.34, No.4, pp.1–17, 2006.

Sang-Ho Hwang received the B.S.,
M.S. and Ph.D. degrees in Computer
Engineering from Yeungnam Univer-
sity, Gyeongsan, South Korea, in
2009, 2013 and 2017 respectively.
His current research interests include
embedded systems and non-volatile

memory systems.

Ju Hee Choi received the B.S.
degree in computer science from
Yonsei University, Seoul, South
Korea, in 2004, and the M.S. and
Ph.D. degrees in computer science
and engineering from Seoul National
University, Seoul, in 2006 and 2016,

respectively. Since 2006, he has been with the S.LSI,
Samsung Electronics Company, Ltd., Suwon, South
Korea. His current research interests include system-on-
chip design methodology, embedded system design, and
low-power design.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.4, AUGUST, 2017 523

Jong Wook Kwak received the B.S.
degree in computer engineering from
Kyungpook National University,
Daegu, South Korea, in 1998, and the
M.S. degree in computer engineering
and the Ph.D. degree in electrical

engineering and computer science from Seoul National
University, Seoul, South Korea, in 2001 and 2006,
respectively. From 2006 to 2007, he was a Senior
Engineer with the system-on-chip (SoC) Research and
Development Center, Samsung Electronics Company,
Ltd., Suwon, South Korea. During 2012–2013, he was a
Visiting Scholar at the Georgia Institute of Technology,
Atlanta, GA, USA. He is currently an Associate
Professor with the Department of Computer Engineering,
Yeungnam University, Gyeongsan, South Korea. His
current research interests include SoC design, advanced
processor architecture, low-power mobile embedded
system design, and high-performance parallel and
distributed computing.

