• Title/Summary/Keyword: reduced-order control

Search Result 1,367, Processing Time 0.028 seconds

The Design of Variable Structure Controller for the System in Phase Canonical Form with Incomplete State Measurements (비 측정 상태변수를 갖는 위상 표준형계통에 대한 가변구조 제어기의 설계)

  • 박귀태;최중경
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.902-913
    • /
    • 1992
  • There have been several control schemes for the single input systems with unmeasurable state variables using variable structure control(VSC) theory. In the previous VSC, the systems must be represented in phase canonical form and the complete measurements for each state variable must be assumed. In order to eliminate these restrictions several VSC methods were proposed. And especially for the systems in phase canonical form with unmeasurable state variables, the reduced order switching function algorithm was proposed. But this method has many drawbacks and can not be used in the case of general form (not phase canonical form) dynamic system. Therefore this paper propose new construction method of switching fuction for the systems in phase canonical form, which reduce the restriction of reduced order switching function algorithm. And this algorithm can be realized for any state representation and adopted in the systems where not all states are available for switching function synthesis or control.

  • PDF

Reduced-order Disturbance Observer based Coordinated Tracking of Uncertain Heterogeneous Multi-Agent Systems (축소 차수 외란 관측기를 이용한 이종 다개체 시스템의 협조 추종 제어)

  • Kim, Jung-Su;Back, Juhoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1231-1237
    • /
    • 2014
  • This paper proposes a reduced-order disturbance observer based coordinated tracking controller for uncertain heterogeneous multi-agent systems. To this end, first the control problem is converted as a robust control problem. Then, a dynamic coordinated controller is designed based on the recently proposed reduced-order disturbance observer. Simulation results are given to show the effectiveness of the proposed control scheme.

A Dynamic Condensation for Tall Buildings with Active Tuned Mass Damper (능동 동조질량감쇠의 고층빌딩 해석을 위한 동적압축법)

  • Jung, Yang-Ki;Qu, Zu Qing
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.21-29
    • /
    • 2006
  • It is impractical to install sensors on every floor of a tall building to measure the full state vector because of the large number of degrees of freedom. This makes it necessary to introduce reduced order control. A kind of system reduction scheme (dynamic condensation method) is proposed in this paper. This method is iterative and Guyan condensation is looked upon as an initial approximation of the iteration. Since the reduced order system is updated repeatedly until a desired one is obtained, the accuracy of the reduced order system resulting from the proposed method is much higher than that obtained from the Guyan condensation method. An eigenvalue shilling technique is applied to accelerate the convergence of Iteration. Two schemes to establish the reduced order system by using the proposed method are also presented and discussed in this paper. The results for a tail building with active tuned mass damper show that the proposed method is efficient for the reduced order modelling and the accuracy is very close to exact only after two iterations.

Vibration Suppression Control for an Articulated Robot;Effects of Model-Based Control Integrated into the Position Control Loop

  • Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2016-2021
    • /
    • 2003
  • This paper deals with a control technique of eliminating the transient vibration with respect to a waist axis of an articulated robot. This control technique is based on a model-based control in order to establish the damping effect on the driven mechanical part. The control model is composed of reduced-order electrical and mechanical parts related to the velocity control loop. The parameters of the control model can be obtained from design data or experimental data. This model estimates a load speed converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically, and it is added to the velocity command to suppress the transient vibration. This control method is applied to an articulated robot regarded as a time-invariant system. The effectiveness of the model-based control integrated into the position control loop is verified by simulations. Simulations show satisfactory control results to reduce the transient vibration at the end-effector.

  • PDF

Robust Deterministic Control of Singularly Perturbed Uncertain Systems (특이섭동 불확실시스템의 견실확정제어)

  • 강철구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1542-1550
    • /
    • 1994
  • For a class of singularly perturbed uncertain system, an output feedback control law is designed. The controller structure is designed based on the uncertain reduced-order system, and the controller parameters are determined by information on the reduced-order and full-order systems. It has been shown that the reduces-order system with the designed controller possesses a stability property(specifically, a global uniform attractivity). Furthermore, the stability property of this control scheme is robust with respect to singular perturbation ; i.e., the full-order system, subject to the same controller, possesses the global uniform attractivity, provided the singular perturbation parameter $\mu<\mu^{*}$, where a threshold value $\mu^{*}$ can be computed from the information available on the full-order system.

Vibration Suppression Control for a Twin-Drive Geared Mechanical System with Backlash: Effects of Model-Based Control

  • Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1392-1397
    • /
    • 2003
  • This paper deals with a control technique of eliminating the transient vibration of a twin-drive geared mechanical system. This technique is based on a model-based control in order to establish the damping effect at the driven machine part. The control model is composed of reduced-order electrical and mechanical parts. This control model estimates a load speed converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically and it is added to the velocity command to suppress the transient vibration generated at the load. This control technique is applied to a twin-drive geared system with backlash. In the previous work, the performance of this control method is examined by simulations. In this paper, the effectiveness of this control technique is verified by experiments. The settling time of the residual vibration generated at the loading inertia can be shortened down to about 1/2 of the uncompensated vibration level.

  • PDF

Depth Control of Underwater Glider Using Reduced Order Observer (축소 차원 관측기를 사용한 수중 글라이더의 깊이 제어)

  • Joo, Moon-Gab;Woo, Him-Chan;Son, Hyeong-Gon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.5
    • /
    • pp.311-318
    • /
    • 2017
  • A reduced order observer is developed for depth control of a hybrid underwater glider which combines the good aspects of a conventional autonomous underwater vehicle and a underwater glider. State variables include the center of gravity of the robot and the weight of the buoyancy bag, which can not be directly measured. By using the mathematical model and available information such as directional velocities, accelerations, and attitudes, we developed a Luenberger's reduced order observer to estimate the center of gravity and the buoyancy weight. By simulations using Matlab/Simulink, the efficiency of the proposed observer is shown, where a LQR controller using full state variables is adopted as a depth controller.

Reduced-Order Unscented Kalman Filter for Sensorless Control of Permanent-Magnet Synchronous Motor

  • Moon, Cheol;Kwon, Young Ahn
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.683-688
    • /
    • 2017
  • The unscented Kalman filter features a direct transforming process involving unscented transformation for removing the linearization process error that may occur in the extended Kalman filter. This paper proposes a reduced-order unscented Kalman filter for the sensorless control of a permanent magnet synchronous motor. The proposed method can reduce the computational load without degrading the accuracy compared to the conventional Kalman filters. Moreover, the proposed method can directly estimate the electrical rotor position and speed without a back-electromotive force. The proposed Kalman filter for the sensorless control of a permanent magnet synchronous motor is verified through the simulation and experimentation. The performance of the proposed method is evaluated over a wide range of operations, such as forward and reverse rotations in low and high speeds including the detuning parameters.

Double Faults Isolation Based on the Reduced-Order Parity Vectors in Redundant Sensor Configuration

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.155-160
    • /
    • 2007
  • A fault detection and isolation (FDI) problem is considered for inertial sensors, such as gyroscopes and accelerometers and a new FDI method for double faults is proposed using reduced-order parity vector. The reduced-order parity vector (RPV) algorithm enables us to isolate double faults with 7 sensors. Averaged parity vector is used to reduce false alarm and wrong isolation, and to improve correct isolation. The RPV algorithm is analyzed by Monte-Carlo simulation and the performance is given through fault detection probability, correct isolation probability, and wrong isolation probability.

Design of Optimal Controller for the Congestion in ATM Networks (ATM망의 체증을 해결하기 위한 최적 제어기 설계)

  • Jung Woo-Chae;Kim Young-Joong;Lim Myo-Taeg
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.359-365
    • /
    • 2005
  • This paper presents an reduced-order near-optimal controller for the congestion control of Available Bit Rate (ABR) service in Asynchronous Transfer Mode (ATM) networks. We introduce the model, of a class of ABR traffic, that can be controlled using a Explicit Rate feedback for congestion control in ATM networks. Since there are great computational complexities in the class of optimal control problem for the ABR model, the near-optimal controller via reduced-order technique is applied to this model. It is implemented by the help of weakly coupling and singular perturbation theory, and we use bilinear transformation because of its computational convenience. Since the bilinear transformation can convert discrete Riccati equation into continuous Riccati equation, the design problems of optimal congestion control can be reduced. Using weakly coupling and singular perturbation theory, the computation time of Riccati equations can be saved, moreover the real-time congestion control for ATM networks can be possible.