• Title/Summary/Keyword: redox potentials

Search Result 86, Processing Time 0.023 seconds

Synthesis and Electrochemical Studies of Ni(Ⅱ) Complexes with Tetradentate Schiff Base Ligands

  • 정병구;임채평;국성근;조기형;최용국
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.173-179
    • /
    • 1996
  • A series of tetradentate Schiff base ligands; [1,2-bis(naphthylideneimino)ethane, 1,3-bis(naphthylideneimino)propane, 1,4-bis(naphthylideneimino)butane, and 1,5-bis(naphthylideneimino)pentane] and their Ni(Ⅱ) complexes have been synthesized. The properties of these ligands and their Ni(Ⅱ) complexes have been characterized by elemental analysis, IR, NMR, UV-vis spectra, molar conductance, and thermogravimetric analysis. The mole ratio of Schiff base to Ni(Ⅱ) metal was found to be 1:1. The electrochemical redox process of the ligands and their Ni(Ⅱ) complexes in DMF and DMSO solution containing 0.1 M tetraethyl ammonium perchlorate (TEAP) as a supporting electrolyte have been investigated by cyclic voltammetry, chronoamperometry, differential pulse voltammetry, and controlled potential coulometry at glassy carbon electrode. The redox process of the ligands was highly irreversible, whereas redox process of Ni(Ⅱ) complexes were observed as one electron transfer process in quasi-reversible and diffusion-controlled reaction. The electrochemical redox potentials of the Ni(Ⅱ) complexes were affected by the chelate ring size of ligands. The diffusion coefficients of Ni(Ⅱ) complexes containing 0.1 M TEAP in DMSO solution were determined to be 5.7-6.9 × 10-6 cm2/sec. Also the exchange rate constants were determined to be 1.8-9.5 × 10-2 cm2/sec. These values were affected by the chelate ring size of ligands.

Electrochemical Studies of Immobilized Laccases on the Modified-Gold Electrodes

  • Yoon Chang-Jung;Kim Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.1
    • /
    • pp.26-31
    • /
    • 2004
  • The direct electrochemical studies of four laccases (plant and fungal laccases) have been investigated on a gold electrode functionalized with a new tether of 2.2'-dithiosalicylic aldehyde. Results from these studies indicate that the redox potential of the active site of plant laccase from Rhus vernificera is shifted to a more negative value(255 mV versus SCE) than that of fungal laccase from Pyricularia oryzae (480 mV versus SCE). Mechanistic studies indicate that the reduction of type-1 Cu precedes the reduction of type-2 and type-3 Cu ions when the electrode is poised initially at different potentials. Also a new tether, 2.2'-dithiosalicylic aldehyde, has been used to study the redox properties of two laccases (LCCI and Lccla) covalently attached to a gold electrode. An irreversible peak at 0.47V vs. SCE is observed in the cyclic voltammorams of LCCI. In contrast, the cyclic voltammograms of LCCIa contain a quasi-reversible peak at 0.18V vs. SCE and an irreversible peak at 0.50V vs. SCE. We find that the replacement of the eleven amino acids a the C-terminus with a single cysteine residue $(i.e., \;LCCI{\rightarrow}LCCIa)$ influences the rate of heterogeneous electron transfer between an electrode and the copper containing active sites $(K_{het}\;for\;LCCI=1.0\times10^{-2}\;s^{-1}\;and\;K_{het}\;for\;LCCI_a= 1.0\;times10^{-1}\;s^{-1}\'at\;0.18V\;versus\;SCE\;and\;4.0\times10^{-2}\;s^{-1}\;at\;0.50V\; versus\;SCE)$. These results show for the first time that the change of the primary structure of a protein via site-directed mutagenesis influences both the redox potentials of the copper ions in the active site and the rate of heterogeneous electron transfer.

Synthesis and Electrochemical Spectroscopic Characterization of Benzophenone Derivatives (벤조페논 유도체의 합성과 전기화학 및 분광학특성에 관한 연구)

  • Han, Man-So;Chae, Won-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.132-142
    • /
    • 2009
  • The benzophenone derivatives(4-$CH_3O$-4'-$NO_2$ and 3,4'-di-$NO_2$) are synthesized by the Fridel-Craft acylation and the nitration method. Electrochemical redox potentials of the benzophenone derivatives (4-$CH_3O$, H, 3-Cl, 3-$NO_2$, 4-$NO_2$, 4-$CH_3O$-4'-$NO_2$, 3,4'-di-$NO_2$) are measured by using cyclic voltammometry. In the relationship of summing Hammett value and redox potential, we find a proportional constant$(\rho)$ that shows a good relation with an electrochemical property and a reactivity of the benzophenone derivatives. The benzophenone substituted with the electron donating groups(4-$OCH_3$ and 4-$OCH_3-4'-NO_2$) are higher the energy in the LUMO level, then increasing a band-gap energy$(E_g)$, their $E_gs$ are obtained as a 3.94 eV and 3.59 eV, respectively.

Reaction between Gas-phase Hydrogen Atom and Chemisorbed Bromine Atoms on a Silicon(001)-(2X1) Surface

  • Park, Jong-Keun;Ree, Jong-Baik;Lee, Sang-Kwon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2271-2278
    • /
    • 2007
  • Electron transfer of a redox protein at a bare gold electrode is too slow to observe the redox peaks. A novel Nafion-riboflavin functional membrane was constructed during this study and electron transfer of cytochrome c, superoxide dismutase, and hemoglobin were carried out on the functional membrane-modified gold electrode with good stability and repeatability. The immobilized protein-modified electrodes showed quasireversible electrochemical redox behaviors with formal potentials of 0.150, 0.175, and 0.202 V versus Ag/AgCl for the cytochrome c, superoxide dismutase and hemoglobin, respectively. Whole experiment was carried out in the 50 mM MOPS buffer solution with pH 6.0 at 25 oC. For the immobilized protein, the cathodic transfer coefficients were 0.67, 0.68 and 0.67 and electron transfer-rate constants were evaluated to be 2.25, 2.23 and 2.5 s?1, respectively. Hydrogen peroxide concentration was measured by the peroxidase activity of hemoglobin and our experiment revealed that the enzyme was fully functional while immobilized on the Nafion-riboflavin membrane.

Corrosion and Passivation of Copper in Artificial Sea Water (인공해수에서 구리의 부식과 부동화 반응)

  • Chon, Jung-Kyoon;Kim, Youn-Kyoo
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.4
    • /
    • pp.305-311
    • /
    • 2007
  • Based on the cyclic voltammograms, potentiodynamic polarizations, transient and steady state Tafel plots and electrochemical impedence spectroscopy, we proposed the copper redox mechanism of the corrosion and passivation in artificial sea water. The copper redox mechanism showed the dependence of the concentration of oxygen in artificial sea water and electrode potentials.

Chemical and Electrochemical Synthesis of Highly Conductive and Processable PolyProDOP-alkyl Derivatives

  • Cho, Youn-Kyung;Pyo, Myoung-Ho;Zong, Kyu-Kwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2010
  • New monomers, possessing various alkyl substituents on propylene dioxypyrrole, were synthesized. The monomers could be easily polymerized to produce highly conductive and soluble polymers. The corresponding polymers showed excellent solubility, retaining electrochemical and optical properties of their parent polymer [poly(propylene dioxypyrrole)]. The conductivities of chemically prepared polymers were quite high in a range of 20 and $60\;Scm^{-1}$. Solubility of the polymer in a common organic solvent was as high as no polymer is deposited on an electrode. The redox potentials of the electrochemically prepared polymers revealed quite stable electro-activity during repeated redox switching up to 500 times. The optoelectrochemistry studies also showed distinct color changes of the polymers upon changing the doping state, indicating strong absorption peaks at 400~600 nm in reduced states and complete bleaching in fully oxidized states.

Electrochemical Studies on Heptamethine Cyanine Dyes

  • Kim, Young-Sung;Shin, Jong-Il;Park, Soo-Youl;Jun, Kun;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.21 no.5
    • /
    • pp.35-40
    • /
    • 2009
  • Computational calculations of molecular orbital and electrochemical redox/oxidation potentials are of very importance to determine the compound properties. The energy levels of molecular orbital were calculated by the density function theory (DFT) with exchange correction functional of local density approximation (LSA) based on the Perdew-Wang (PWC) setting and cyclic voltammetry.

Seasonal Variation of Redox Potential in Jinkwannaedong Ecological Conservation Area (진관내동 생태계보전지역에서 산화환원전위(Redox Potentia)의 월별 변화)

  • Kim, Jae-Geun
    • Journal of Wetlands Research
    • /
    • v.6 no.2
    • /
    • pp.65-71
    • /
    • 2004
  • The most significant effect of excess water in wetlands is the isolation of the soil from the atmosphere and the prevention of O2 from diffusing into soil. The blockage of atmospheric O2 induces biological and chemical processes that change soil from oxidized into reduced state. When dry soil develop into hydric soil, redox potential is dropping. The redox potential is a indicator of hydric soil and affect chemical function of wetlands. To reveal characteristics of wetland soil, redox potential was measured in Jinkwannaedong ecological conservation area from May in 2003 to March in 2004. Redox potentials in May ranged from 5 mV at 25 cm depth to 200 mV at 10 cm depth. It decreased to about -200 m V at all depths and continued until October. In winter, redox potential was slowly increased; it was the highest at 5 cm depth and lowest at 20 cm depth. Annual variations of redox potential in 20 cm depth showed the same pattern at 5 sites; low in growing season and high in non-growing season. This results indicates that soils of study sites are in hydric state and methanogenesis is occurring in Jinkwannaedong ecological conservation area.

  • PDF

Characteristics of HOMO and LUMO Potentials by Altering Substituents: Computational and Electrochemical Determination

  • Kim, Young-Sung;Kim, Sung-Hoon;Kim, Tae-Kyung;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.20 no.5
    • /
    • pp.41-46
    • /
    • 2008
  • Recently, computational calculation of molecular energy potentials and electrochemical reduction/oxidation behaviors are of very importance in view point of prediction of dye's properties such as energy levels and bandgaps of absorption. This can be influenced by their different constituents or substituents in chromogen molecules. Structural conformations and properties with computational modeling calculation are numerically simulated, which are fully or partly based on fundamental laws of physics. In addition, cyclic voltammetric measurement was used to obtain the experimental redox potential values, which were compared to the computed simulation values.

Electrochemical Behavior of Redox Proteins Immobilized on Nafion-Riboflavin Modified Gold Electrode

  • Rezaei-Zarchi, S.;Saboury, A.A.;Hong, J.;Norouzi, P.;Moghaddam, A.B.;Ghourchian, H.;Ganjali, M.R.;Moosavi-Movahedi, A.A.;Javed, A.;Mohammadian, A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2266-2270
    • /
    • 2007
  • Electron transfer of a redox protein at a bare gold electrode is too slow to observe the redox peaks. A novel Nafion-riboflavin functional membrane was constructed during this study and electron transfer of cytochrome c, superoxide dismutase, and hemoglobin were carried out on the functional membrane-modified gold electrode with good stability and repeatability. The immobilized protein-modified electrodes showed quasireversible electrochemical redox behaviors with formal potentials of 0.150, 0.175, and 0.202 V versus Ag/AgCl for the cytochrome c, superoxide dismutase and hemoglobin, respectively. Whole experiment was carried out in the 50 mM MOPS buffer solution with pH 6.0 at 25 oC. For the immobilized protein, the cathodic transfer coefficients were 0.67, 0.68 and 0.67 and electron transfer-rate constants were evaluated to be 2.25, 2.23 and 2.5 s?1, respectively. Hydrogen peroxide concentration was measured by the peroxidase activity of hemoglobin and our experiment revealed that the enzyme was fully functional while immobilized on the Nafion-riboflavin membrane.