DOI QR코드

DOI QR Code

Characteristics of HOMO and LUMO Potentials by Altering Substituents: Computational and Electrochemical Determination

  • Kim, Young-Sung (BK 21 FTIT, Dept. of Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Kim, Sung-Hoon (Dept. of Textile System Engineering, Kyungpook National University) ;
  • Kim, Tae-Kyung (Dept. of Textile System Engineering, Kyungpook National University) ;
  • Son, Young-A (BK 21 FTIT, Dept. of Organic Materials and Textile System Engineering, Chungnam National University)
  • Published : 2008.10.27

Abstract

Recently, computational calculation of molecular energy potentials and electrochemical reduction/oxidation behaviors are of very importance in view point of prediction of dye's properties such as energy levels and bandgaps of absorption. This can be influenced by their different constituents or substituents in chromogen molecules. Structural conformations and properties with computational modeling calculation are numerically simulated, which are fully or partly based on fundamental laws of physics. In addition, cyclic voltammetric measurement was used to obtain the experimental redox potential values, which were compared to the computed simulation values.

Keywords

References

  1. F. Nourmohannnadian, I. Yavari, B. Mohtat, S. Zia Shafaei, Density functional theory study of 9,10-anthraquinone and its structural isomers, Dyes and pigments, 75, 479-482(2007) https://doi.org/10.1016/j.dyepig.2006.06.028
  2. A. I. M. Koraiem, R. M. Abu EI-Hamd, A. K. Khalafalah, A. S. Hannnam, M. A. EI-Maghraby, M. M. Gomaa, Synthesis and properties of some Naphtho(Quinolino)-Quinone Heterocyclic Dimethine Cyanine Dyes, Dyes and pigment, 30, 89-98(1996) https://doi.org/10.1016/0143-7208(95)00047-X
  3. T. Itoh, H. Iwayama, S. Iwatsuki, Synthesis of Donor-Acceptor Substituted Quinonemethide Imines for Nonlinear Optical Materials, Dyes and pigment, 27, 9-15(1995) https://doi.org/10.1016/0143-7208(94)00031-V
  4. K. Tae Kyung, S. Young A, Affinity of disperse dyes on poly(ethylene terephthalate) in non-aqueous nedia Part 2: effect of substituents, Dyes andpigments, 66, 19-25(2005) https://doi.org/10.1016/j.dyepig.2004.08.009
  5. W. Huang, Structural and computational studies of azo dyes in the hydrazone form having the same pyridine-2,6-dione component (II): C.I. Disperse Yellow 119 and C.I. Disperse Yellow 211, Dyes and pigment, 79, 69-75(2008) https://doi.org/10.1016/j.dyepig.2008.01.007
  6. O. Gungor, A. Yilmaz, S. Memonc, M. Yilmaz, Evaluation of the performance of calix[8]arene derivatives as liquid phase extraction material for the removal of azo dyes, Dyes and pigment, 158, 202-207(2008)
  7. J. N. Latosinska, M. Latosinska, J. Kasprzak, $^{35}Cl-NQR$ and DFT study of electronic structure of arnlodipine and felodipine vascular-selective drugs from the dihydropyridine $Ca^{++}$ antagonists group, Chemical Physics Letters, 85, 61-69(2008) https://doi.org/10.1016/0009-2614(82)83461-1
  8. F. Brovelli, B. L. Rivas, J. C. Bemede, M. A. del Valle, F. R. Diaz, Y. Berredjem, Electrochemical and optical studies of 1,4-diaminoanthraquinone for solar cell applications, Polymer Bulletin, 58, 521-527(2007) https://doi.org/10.1007/s00289-006-0686-0
  9. M. Sharnsipur, A. Siroeinejad, B. Hennnateenejad, A. Abbaspour, H. Sharghi, K. Alizadeh, S. Arshadi, Cyclic voltammetric, computational, and quantitative structure-electrochemistry relationship studies of the reduction of several 9,10-anthraquinone derivatives, Journal of electroanalytical chemistry, 600, 345-358 (2007) https://doi.org/10.1016/j.jelechem.2006.09.006
  10. P. Bhyrappa, M. Sankar, B. Varghese, Mixed Substituted Porphyrins: Structural and Electrochemical Redox Properties, Inorganic chemistry, 45, 4136-4149(2006) https://doi.org/10.1021/ic052035b
  11. S. Tsutsui, K. Sakamoto, H. Yoshida, A. Kunai, Cyclic voltammetry and theoretical calculations of silyl-substituted 1,4-benzoquinones, Journal of organa metallic chemistry, 690, 1324-1331(2005) https://doi.org/10.1016/j.jorganchem.2004.11.051
  12. W. HuangKamaljit, Structural and computational studies of azo dyes in the hydrazone form having the same pyridine-2,6-dione component (II): C.I. Disperse Yellow 119 and CI. Disperse Yellow 211, Dyes and pigment, 79, 69-75(2008) https://doi.org/10.1016/j.dyepig.2008.01.007
  13. G. B. Ferreira, E. Hollauer, N. M. Comerlato, J. L. Wardell, An experimental and theoretical study of the electronic spectra of tetraethylannnonium [bis(1,3-dithiole-2-thione-4,5-dithiolato)M(III)] and tetraethylammonium [bis(1,3-dithiole-2-one-4,5-dithiolato)M(III)] M = Sb or Bi), Spectrochimica Acta Part A, 71, 215-229(2008) https://doi.org/10.1016/j.saa.2007.12.010
  14. C. N. Ramachandran, D. Roy, N. Sathyamurthy, Host-guest interaction in endohedral fullerenes, Chemical Physics Letters, 461, 87-92(2008) https://doi.org/10.1016/j.cplett.2008.06.073
  15. B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys., 92, 508(1990) https://doi.org/10.1063/1.458452
  16. B. Delley, from molecules to solids with the DMOl [sup 3] approach, J. Chem. Phys., 113, 7756-7764 (2000) https://doi.org/10.1063/1.1316015
  17. A. K. Agrawal, S. A. Jenekhe, Electrochemical Properties and Electronic Structures of Conjugated Polyquinolines and Polyanthrazolines, Chem. Mater., 8, 579(1996) https://doi.org/10.1021/cm9504753
  18. R. M. Noyes, Hydrogen Iodide Revisited. Continued Significance Sullivan Experiments, J. Am. Chem. Soc., 96, 7623-7624(1962) https://doi.org/10.1021/ja00832a004
  19. C. Q. Ma, L. Q. Zhang, J. H. Zhou, X. S. Wang, B. W. Zhang, Y. Cao, P. Bugnon, M. Schaer, F. Nusch, D. Q. Zhang, Y. Qiu, 1,3-Diphenyl-5-(9-phenanthryl)- 4,5-dihydro-1H-pyrazole (DPPhP): structure, properties, and application in organic light-emitting diodes, J. Mater. Chem., 12, 3481-3486(2002) https://doi.org/10.1039/b208130j

Cited by

  1. Study of HOMO and LUMO Energy Levels for Spirolactam Ring Moiety Using Electrochemical Approach vol.25, pp.2, 2013, https://doi.org/10.5764/TCF.2013.25.2.83
  2. Electrochemical Study on Energy Potential Levels with Pyrene Molecule vol.25, pp.3, 2013, https://doi.org/10.5764/TCF.2013.25.3.159
  3. Characteristics of HOMO and LUMO Energy Potentials toward Rhodamine 6G-Naphthaldehyde Chemosensor vol.25, pp.1, 2013, https://doi.org/10.5764/TCF.2013.25.1.1
  4. Electrochemical Study on Rhodamine 6G-Indole Based Dye for HOMO and LUMO Energy Levels vol.25, pp.1, 2013, https://doi.org/10.5764/TCF.2013.25.1.7
  5. Electrochemical Study for 1,3-Bisdicyanovinylindane vol.25, pp.2, 2013, https://doi.org/10.5764/TCF.2013.25.2.89