DOI QR코드

DOI QR Code

Electrochemical Studies of Immobilized Laccases on the Modified-Gold Electrodes

  • Published : 2004.02.01

Abstract

The direct electrochemical studies of four laccases (plant and fungal laccases) have been investigated on a gold electrode functionalized with a new tether of 2.2'-dithiosalicylic aldehyde. Results from these studies indicate that the redox potential of the active site of plant laccase from Rhus vernificera is shifted to a more negative value(255 mV versus SCE) than that of fungal laccase from Pyricularia oryzae (480 mV versus SCE). Mechanistic studies indicate that the reduction of type-1 Cu precedes the reduction of type-2 and type-3 Cu ions when the electrode is poised initially at different potentials. Also a new tether, 2.2'-dithiosalicylic aldehyde, has been used to study the redox properties of two laccases (LCCI and Lccla) covalently attached to a gold electrode. An irreversible peak at 0.47V vs. SCE is observed in the cyclic voltammorams of LCCI. In contrast, the cyclic voltammograms of LCCIa contain a quasi-reversible peak at 0.18V vs. SCE and an irreversible peak at 0.50V vs. SCE. We find that the replacement of the eleven amino acids a the C-terminus with a single cysteine residue $(i.e., \;LCCI{\rightarrow}LCCIa)$ influences the rate of heterogeneous electron transfer between an electrode and the copper containing active sites $(K_{het}\;for\;LCCI=1.0\times10^{-2}\;s^{-1}\;and\;K_{het}\;for\;LCCI_a= 1.0\;times10^{-1}\;s^{-1}\'at\;0.18V\;versus\;SCE\;and\;4.0\times10^{-2}\;s^{-1}\;at\;0.50V\; versus\;SCE)$. These results show for the first time that the change of the primary structure of a protein via site-directed mutagenesis influences both the redox potentials of the copper ions in the active site and the rate of heterogeneous electron transfer.

Keywords

References

  1. E. Katz, D. D. Schlereth, H.-L. Schmidt, and A. J. J. Olsthoom, J. Electroanal. Chem., 368, 165 (1994) https://doi.org/10.1016/0022-0728(93)03094-6
  2. T. Sawaguchi, T. Matsue, and I. Uchida, Bioelectrochem. Bioenerg., 29, 127 (1992) https://doi.org/10.1016/0302-4598(92)80060-T
  3. R. C. Horton Jr., T. M. Heme, and D. C. Myles, J. Am. Chem. Soc., 119, 12980 (1997) https://doi.org/10.1021/ja971329w
  4. R. G. Nuzzo, B. R. Zegarski, and L. H. Dubois, J. Am. Chem. Soc., 109, 733 (1987) https://doi.org/10.1021/ja00237a017
  5. A. Ulman, J. E. Eilers, and N. Tilman, Langmuir, 5, 1147 (1989)
  6. A. Ulman, 'An Introduction to Ultrathin Organic Films: From Langmuir-Blogett to Self-Assembly', Academic Press, New York (1991)
  7. J. P. Folkers, P. E. Laibinis, and G. M. Whitesides, Langmuir, 8, 1330 (1992) https://doi.org/10.1021/la00041a015
  8. S. E. Creager and G. K. Rowe, J. Electroanal. Chem., 370, 203 (1994) https://doi.org/10.1016/0022-0728(93)03173-M
  9. S. E. Creager and K. G. Olsen, Anal. Chim. Acta, 307, 277 (1995) https://doi.org/10.1016/0003-2670(94)00506-H
  10. S. E. Creager and G. K. Rowe, J. Electroanal. Chem., 420, 291 (1997) https://doi.org/10.1016/S0022-0728(96)04785-7
  11. W. R. Everett and I. Fritsch-Faules, Anal. Chim. Acta, 307, 253 (1995) https://doi.org/10.1016/0003-2670(95)00004-J
  12. G. Fahraeus and H. Ljunggren, Biochim. Biophys. Acta, 54, 192 (1961) https://doi.org/10.1016/0006-3002(61)90955-6
  13. G. Benfield, S. M. Bocks, K. Bromlev and B. R. Brown, Phytochem., 3, 79 (1964) https://doi.org/10.1016/S0031-9422(00)83998-9
  14. B. R. M. Reinhammar and R. Lontie (ed.), 'Copper Proteins and Copper Enzymes', Vol. Ill, CRC Press, Inc., Boca Raton, FL. (1984)
  15. U. Takahama, Physiol. Plant., 93, 61 (1995) https://doi.org/10.1034/j.1399-3054.1995.930110.x
  16. B. G. Malmstrom, L.-E. Andreassen, B. Reinhammer and P. D. Boyer (ed.), 'The Enzymes', Vol. XIIB Academic Press, New York (1975)
  17. B. G. Malmstrom, 'Multi-Copper Oxidases', World Scientific, Singapore (1997)
  18. R. Malkin and B. G. Malmstrom, Adv. Enzymol., 33, 177 (1970)
  19. L.-E. Andreassen and B. Reinhammar, Biochim. Biophys. Acta, 445, 579 (1976) https://doi.org/10.1016/0005-2744(76)90112-1
  20. A. M. Kuznertsov, V. A. Bogdanovskaya, M. R. Tarasevich, .and E. F. Gavrilova, FEBS Lett., 215, 219 (1987) https://doi.org/10.1016/0014-5793(87)80149-7
  21. M. R. Tarasevich, A. I. Yaropolov, V. A. Bogdanovskaya, and S. D. Varfolomeev, J. Electroanal. Chem., 104, 393 (1979) https://doi.org/10.1016/S0022-0728(79)81047-5
  22. A. I. Yaropolov, O. V. Skorobogat'ko, S. S. Vartanov, and S. D. Varfolomeev, Appl. Biochem. Biotech., 49, 257 (1994) https://doi.org/10.1007/BF02783061
  23. A. I. Yaropolov, A. N. Kharybin, J. Emneus, G. Marko-Varga, and L. Gorton, Bioelectrochem. Bioenerg., 40, 49 (1996) https://doi.org/10.1016/0302-4598(96)01919-8
  24. J. L. Cole, G. O. Tan, E. K. Yang, K. O. Hodgson, and E. I. Solomon, J. Am. Chem. Soc., 112, 2243 (1990) https://doi.org/10.1021/ja00162a025
  25. W. Shin, U. M. Sundaram, J. L. Cole, H. H. Zhang, B. Hedman, K. O. Hodgson, and E. I. Solomon, J. Am. Chem. Soc., 118, 3202 (1996) https://doi.org/10.1021/ja953621e
  26. V. Ducros, A. M. Brzozowski, K. S. Wilson, S. H. Brown, P. tergaard, P. Schneider, D. S. Yaver, P. A. H., and G. J. Davies, Nature Struct. Biol., 5, 310 (1998) https://doi.org/10.1038/nsb0498-310
  27. C.-W. Lee, H. B. Gray, F. C. Anson, and B. G. Malmstrom, J. Electroanal. Chem., 172, 289 (1984) https://doi.org/10.1016/0022-0728(84)80193-X
  28. M. H. Thuesen, O. Farver, B. Reinhammar, and J. Ulstrup, Acta Chem. Scand., 52, 555 (1998) https://doi.org/10.3891/acta.chem.scand.52-0555
  29. T. Sakurai, O. Ikeda, and S. Suzuki, Inorg. Chem., 29, 4715 (1990) https://doi.org/10.1021/ic00348a026
  30. T. Sakurai and F. Nose, Chem. Lett., 1075 (1995)
  31. T. Sakurai, Chem. Lett., 481 (1995)
  32. T. Sakurai, F. Nose, T. Fujiki, and S. Suzuki, Bull. Chem. Soc. Jpn., 69, 2855 (1996) https://doi.org/10.1246/bcsj.69.2855
  33. O. Ikeda and T. Sakurai, Eur. J. Biochem., 219, 813 (1994) https://doi.org/10.1111/j.1432-1033.1994.tb18562.x
  34. G. D. Figuly, C. K. Loop, and J. C. Martin, J. Am. Chem. Soc., 111, 654 (1989) https://doi.org/10.1021/ja00184a038
  35. E. Block, V. Eswarakrishnan, M. Gemon, G. Ofori-Okai, C. Saha, K. Tang, and J. Zubieta, J. Am. Chem. Soc., 111, 658 (1989) https://doi.org/10.1021/ja00184a039
  36. K. Smith, C. M. Lindsay, and G. J. Pritchard, J. Am. Chem. Soc., 111, 665 (1989) https://doi.org/10.1021/ja00184a040
  37. D. A. Nation, M. R. Taylor, and K. P. Wainwright, J. Chem. Soc., Dalton Trans., 3001 (1996)
  38. H. S. Kasmai and S. G. Mischke, Synth. Commu., 763 (1989)
  39. P. J. Marini, K. S. Murray, and B. O. West, J. Chem. Soc., Dalton Trans., 143 (1983)
  40. D. Leaver, J. Smolicz, and W. H. Stafford, J. Am. Chem. Soc., 740-748 (1962)
  41. F. D. Toste, A. J. Lough, and W. J. Still, J. Tetrahedron lett., 36, 6619 (1995) https://doi.org/10.1016/00404-0399(50)1369-S
  42. B. R. M. Reinhammar, Biochim. Biophys. Acta, 275, 245 (1972) https://doi.org/10.1016/0005-2728(72)90045-X
  43. K. H. Hyung, K. Y. Jun, H.-G. Hong, Y. S. Kim, and W. Shin, Bull. Korean Chem. Soc., 18, 564 (1997)
  44. E. I. Solomon, T. E. Machonkin, U. M. Sundaram and A. Messerschmidt (ed.), 'Multi-Copper Oxidases', World Scientific, River Edge, NJ (1997)
  45. J. A. Guckert, M. D. Lowery, and E. I. Solomon, J. Am. Chern. Soc., 117, 2814 (1995)
  46. F. Xu, A. E. Palmer, D. S. Yaver, R. M. Berka, G. A. Gambetta, S. H. Brown, and E. I. Solomon, J. BioI. Chem., 274, 12372 (1999) https://doi.org/10.1074/jbc.274.18.12372
  47. F. Xu, R. M. Berka, J. A. Wahleithner, B. A. Nelson, J. R. Shuster, S. H. Brown, A. E. Palmer, and E. I. Solomon, Biochim. J. 334, 63 (1998) https://doi.org/10.1042/bj3340063
  48. A. J. Bard and L. R. Faulkner, 'Electrochemical Methods: Fundamental and Applications', John Wiley & Sons Inc., NY (1980)
  49. E. Laviron, J Electroanal. Chem., 101, 19 (1979) https://doi.org/10.1016/S0022-0728(79)80075-3
  50. T. Lotzbeyer, W. Schuhmann, E. Katz, and J. Falter, J. Electroanal. Chem., 377, 291 (1994) https://doi.org/10.1016/0022-0728(94)03646-2
  51. S. Song, R. A. Clark, E. F. Bowden, and M. Tarlov, J Phys. Chem., 97, 6564 (1993) https://doi.org/10.1021/j100126a037
  52. E. Katz and I. Wilner, Langmuir, 13, 3364 (1997) https://doi.org/10.1021/la961095e
  53. G. K. Rowe, M. T. Carter, J. N. Richardson, and R. W. Murray, Langmuir, 11, 1797 (1995) https://doi.org/10.1021/la00005a059

Cited by

  1. On the Possibility of Uphill Intramolecular Electron Transfer in Multicopper Oxidases: Electrochemical and Quantum Chemical Study of Bilirubin Oxidase vol.24, pp.7, 2012, https://doi.org/10.1002/elan.201200188
  2. Interfacial Behavior and Activity of Laccase and Bilirubin Oxidase on Bare Gold Surfaces vol.30, pp.10, 2014, https://doi.org/10.1021/la402432q
  3. Electroreduction of laccase covalently bound to organothiol monolayers on gold electrodes vol.52, pp.18, 2007, https://doi.org/10.1016/j.electacta.2007.02.008
  4. Direct Heterogeneous Electron Transfer Reactions ofTrametes hirsuta Laccase at Bare and Thiol-Modified Gold Electrodes vol.18, pp.19-20, 2006, https://doi.org/10.1002/elan.200603600
  5. Direct electron transfer between copper-containing proteins and electrodes vol.20, pp.12, 2005, https://doi.org/10.1016/j.bios.2004.10.003
  6. Orientation of Laccase on Charged Surfaces. Mediatorless Oxygen Reduction on Amino- and Carboxyl-Ended Ethylphenyl Groups vol.116, pp.49, 2012, https://doi.org/10.1021/jp3098654