DOI QR코드

DOI QR Code

Electrochemical Studies on Heptamethine Cyanine Dyes

  • Kim, Young-Sung (BK 21 FTIT, Department of Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Shin, Jong-Il (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Park, Soo-Youl (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Jun, Kun (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Son, Young-A (BK 21 FTIT, Department of Organic Materials and Textile System Engineering, Chungnam National University)
  • Published : 2009.10.27

Abstract

Computational calculations of molecular orbital and electrochemical redox/oxidation potentials are of very importance to determine the compound properties. The energy levels of molecular orbital were calculated by the density function theory (DFT) with exchange correction functional of local density approximation (LSA) based on the Perdew-Wang (PWC) setting and cyclic voltammetry.

Keywords

References

  1. C. Q. Zhu, Y. Q. Wu, H. Zheng, J. L. Chen, D. H. Li, S. H. Li, J. G. Xu, Determination of Nucleic Acids by Near-Infrared Fluorescence Quenching of Hydrophobic Thiacyanine Dye in the Presence of Triton X-100, Analytical sciences june, 20, 945-949(2004) https://doi.org/10.2116/analsci.20.945
  2. I. R. Pais, M. J. Nunes, L. V. Reis, P. F. Santos, P. Almeida, The Synthesis of Chloroheptamethinecyanine Dyes, Dyes and pigments, 77, 48-52(2008) https://doi.org/10.1016/j.dyepig.2007.03.004
  3. M. J. Nunes, L. V. Reis, P. F. Santos, P. Almeida, Dynamic Exchange of Heterocyclic Subnits During Halogen Substitution in Chloroheptamethinecyanie Dyes by Benzoazolium Salts, Tetrahedron letters, 48, 5137-5142(2007) https://doi.org/10.1016/j.tetlet.2007.05.068
  4. C. Encinas, S. Miltsov, E. Otazo, L. Rivera, M. Puyol, J. Alonso, Synthesis and Spectroscopic Characterisation of Heptamethincyanine NIR Dyes for Their Use in Optochemical Sensors, Dyes and pigments, 71, 28-36(2006) https://doi.org/10.1016/j.dyepig.2005.05.013
  5. M. Matsui, Y. Hashimoto, K. Funabiki, J. Y. Jin, T. Yoshida, H. Minoura, Application of Near-Infrared Absorbing Heptamethine Cyanine Dyes as Sensitizers for Zinc Oxide Solar Cell, Synthetic metals, 148, 147-153(2005) https://doi.org/10.1016/j.synthmet.2004.09.026
  6. S. S. Ramos, P. F. Santos, L. V. Reis, P. A. Almeida, Some New Symmetric Rigidfied Triheterocyclic Heptamethinecyanice Dyes Absorbing in the Near Infrared, Dyes and pigments, 53, 143-152(2002) https://doi.org/10.1016/S0143-7208(02)00003-7
  7. M. Li, G. E. Pacey, Spectrophotometric Determincation of Trace Water in Organic Solvents with a Near Infrared Absorbing Dye, Talanta, 44, 1949-1958(1997) https://doi.org/10.1016/S0039-9140(96)02111-X
  8. J. R. Lenhard, B. R. Hein, A. A. Muenter, Redox Limitations for the Spectral Sensitization of Silver Halide in the Infrared, J. Phys. Chem, 97, 8269-8280(1993) https://doi.org/10.1021/j100133a025
  9. G. B. Ferreira, E. Hollauer, N. M. Comerlato, J. L. Wardell, An Experimental and Theoretical Study of the Electronic Spectra of Tetraethylammonium [bis(1,3-dithiole-2-thione-4,5- dithioato)M(III)] and Tetraethylammonium [bis(1,3-dithiole-2-one-4,5-dithilato)M(III)] (M = Sb or Bi), Spectrochemica Acta Part A, 71(1),215-229(2008) https://doi.org/10.1016/j.saa.2007.12.010
  10. C. N. Ramachandran, D. Roy, N. Sathyamurthy, Host-Guest Interaction in Endohedral Fullerenes, Chemical physics letters, 461, 87-92(2008) https://doi.org/10.1016/j.cplett.2008.06.073
  11. I. Losito, F. Palmisano, P. G. Zambonin, o- Phenylenediamine Electropolymerization by Cyclic Voltammetry Combined with Electrospray Ionization-Ion Trap Mass Spectrometry, Anal. Chem, 75, 4988-4995(2003) https://doi.org/10.1021/ac0342424
  12. C. J. Tonzola, M. M. Alam, W. Kaminsky, S. A. Jenekhe, New n-Type Organic Semiconductors: Synthesis, Single Crystal Structures, Cyclic Voltammetry, Photophysics, Electron Transport, and Electroluminescence of a Series of Diphenylanthrazolines, J. Am. Chem. Soc, 125, 13548-13558(2003) https://doi.org/10.1021/ja036314e
  13. S. Janietz, D. D. C. Bradley, M. Grell, C. Giebeler, M. Inbasekaran, E. P. Woo, Electrochemical Determination of the Ionization Potential and Electron Affinity of Poly (9,9-dioctylfluorene), Applied physics letters, 73, 2453-2455(1998) https://doi.org/10.1063/1.122479
  14. H. Shinoda, Y. Mori, T. Kitagawa, K. Kawano, Ab Initio MO Computation of the Hydration Effect on the Ionization Potential of Sodium Pyrenesulfonate, Journal of molecular structure: THEOCHEM, 715, 205-214(2005) https://doi.org/10.1016/j.theochem.2004.10.049
  15. P. W. Harland, C. Vallance, Ionization Cross- Sections and Ionization Efficiency Curves from Polariazbility Volumes and Ionization Potentials, Mass spectrometry and ion processes, 171, 173-181(1997) https://doi.org/10.1016/S0168-1176(97)00137-7
  16. F. Algi, A. Cihaner, An Electroactive Polymeric Material and Its voltammetric Response Towards Alkali Metal Cations in Neat Water, Tetrahedron letter, 49, 3530-3533(2008) https://doi.org/10.1016/j.tetlet.2008.03.139
  17. Y. Chen, T. Y. Wu, Synthesis, Optical and Electrochemical Properties of Luminescent Copolymers Containing N-hexyl-3,8-iminodibenzyl Chromophores, Polymer, 42, 9895-9901(2001) https://doi.org/10.1016/S0032-3861(01)00531-6
  18. M. Shamsipur, A. Siroueinejad, B. Hemmateenejad, A. Abbaspour, H. Sharghi, K. Alizadeh, S. Arshadi, Cyclic Voltammetric, Computational, and Quantitative Structure-electrochemistry Relationship Studies of the Reduction of Several 9,10-anthraquinone Derivatives, journal of electro analytical chemistry, 600, 345-358(2007) https://doi.org/10.1016/j.jelechem.2006.09.006
  19. A. K. Agraqal, S. A. Jenekhe, Electrochemical Properties and Electronic Structures of Conjugated Polyquinolines and Polyantnthrazolines, Chem. Mater, 8, 579(1996) https://doi.org/10.1021/cm9504753
  20. R. M. Noyes, Hydrogen Iodide Revistied Continued Signigicance Sullival Experiments, J. Am. Chem. Soc., 96, 7623-7624(1962) https://doi.org/10.1021/ja00832a004
  21. C. Q. Ma, L. Q. Zhang, J. H. Zhou, X. S. Wang, B. W. Zhang, Y. Cao, P. Bugnon, M. Schaer, F. Nusch, D. Q. Zhang, Y. Qiu, 1,3-Diphenyl-5-(9-phenanthryl)-4,5-dihydro-1H-pyrazole (DPPhP): Structure, Properties, and Application in Organic Light-Emitting Diodes, J. Mater. Chem, 12, 3481-3486(2002) https://doi.org/10.1039/b208130j
  22. H. S. Lee, J. H. Kim, Measurement of Physical Properties of Conducting Polymers, Polymer science and technology, 18, 488-495(2007)
  23. H. S. Youn, S. Y. Park, S. R. Shin, J. I. Shin, S. G. Oh, K. Jun, Y. A. Son, Design and Synthesis of Novel Symmetrical Heptamethine Cyanine Chromophores, Fibers and polymers, submitted(2009)
  24. J. L. Bredas, R. Silbey, D. S. Boudreaux, R. R. Chance, Chain-Length Dependence of Electronic and Electrochemical Properties of Conjugated Systems: Polyacetylene, Polyphenylene, Polythiophene, and Polypyrrole, J. Am. Chem. Soc., 105, 6555-6559(1983) https://doi.org/10.1021/ja00360a004

Cited by

  1. Dependence of the Electrochemical Redox Properties of Fullerenes on Ionic Liquids vol.33, pp.47, 2017, https://doi.org/10.1021/acs.langmuir.7b03076
  2. Electrochemical Study for 1,3-Bisdicyanovinylindane vol.25, pp.2, 2013, https://doi.org/10.5764/TCF.2013.25.2.89
  3. Characteristics of HOMO and LUMO Energy Potentials toward Rhodamine 6G-Naphthaldehyde Chemosensor vol.25, pp.1, 2013, https://doi.org/10.5764/TCF.2013.25.1.1
  4. Electrochemical Study on Rhodamine 6G-Indole Based Dye for HOMO and LUMO Energy Levels vol.25, pp.1, 2013, https://doi.org/10.5764/TCF.2013.25.1.7
  5. Study of HOMO and LUMO Energy Levels for Spirolactam Ring Moiety Using Electrochemical Approach vol.25, pp.2, 2013, https://doi.org/10.5764/TCF.2013.25.2.83
  6. Electrochemical Study on Energy Potential Levels with Pyrene Molecule vol.25, pp.3, 2013, https://doi.org/10.5764/TCF.2013.25.3.159