• Title/Summary/Keyword: red alga

Search Result 130, Processing Time 0.024 seconds

Lemanea manipurensis sp. nov. (Batrachospermales), a freshwater red algal species from North-East India

  • Ganesan, E.K.;West, J.A.;Zuccarello, G.C.;de Goer, S. Loiseaux;Rout, J.
    • ALGAE
    • /
    • v.30 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • A new macroscopic riverine red algal species, Lemanea manipurensis sp. nov. (Batrachospermales) is described from Manipur in northeast India. It has a sparsely branched, pseudoparenchymatous thallus with a single, central axial filament that lacks cortical filaments. Spermatangia occur generally in isolated, low and indistinct patches or form an almost continuous ring around the axis. Carposporophytes project into the hollow thallus cavity without an ostiole. The most striking morphological feature is the carposporophyte with very short gonimoblast filaments having cylindrical, narrow and sparsely branched sterile filaments, the terminal cell of each branch with a single, large, elongate carpospore. The widely distributed L. fluviatilis has spherical carpospores in long branched chains. Phylogenetic analysis of rbcL sequence data and comparison with other Batrachospermales clearly show that our specimens do not align with other species of Lemanea and Paralemanea investigated thus far. Five specific names attributed in previous literature (1973-2014) to Lemanea from Manipur, L. australis, L. catenata, L. fluviatilis, L. mamillosa, and L. torulosa are rejected until critical anatomical and molecular evidence is available for specimens from the Manipur river systems. Taxa referable to Paralemanea were not confirmed for India in this study. In view of the high demand for food and medical uses of L. manipurensis in northeast India, conservation measures are needed for its long term survival. The present paper constitutes the first combined morphological / molecular study on a freshwater red alga from India.

Tissue Culture of Grateloupia acuminata (Rhodophyta) from the Eastern Coast of Koea (동해안 홍조 지누아리사촌(Grateloupia acuminata) 식물의 조직배양)

  • Kim Hyung-Geun;Park Joong-Goo
    • Journal of Aquaculture
    • /
    • v.19 no.3
    • /
    • pp.216-221
    • /
    • 2006
  • The Effect of different temperatures and photon irradiance on the growth of crust and the regeneration of tissue fragments of the commercially important red alga Grateloupia acuminat Okamura were examined in laboratory cultures. The tetraspore developed into basal crusts and produced upright thalli. Crust grew very fast at $25^{\circ}C$ and $80{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ after one week in indoor culture. However, they stopped growing after three weeks. Maximum growth was $275{\mu}m$ in diameter. They required four weeks to get upright thalli at $5^{\circ}C$, while only three weeks were required at $10^{\circ}C$. When different light intensities were compared at $15^{\circ}C$, cells of the crusts were well differentiated $80{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and consistently divided so that upright thalli were produced. In aeration culture, the upright thalli grew up to 6.5 cm in length within 4 months. Thus, it is possible to produce mass cultures of Grateloupia in the field. In addition, female and male gametophytes developed from the tetraspores and they were fertilized to produce tetrasporohyte thalli. By this procedure, the normal life cycle of the red alga G. acuminata was completed.

Structures and some Properties of the Antimicrobial Compounds in the Red Alga, Symphyocladia latiuscula (참보라색우무에서 추출한 항균물질의 구조 및 특성)

  • LIM Chi-Won;LEE Jong-Soo;CHO Young-Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.4
    • /
    • pp.280-287
    • /
    • 2000
  • Three antimicrobial compounds (SL-l, SL-2 and SL-3) were isolated and identified from the marine red alga, Symphyocladia latiuscula. In addition, their biological functionalities such as cytotoxicity and desmutagenic activity were investigated. From the cryophyllized S. JatiuscuJa, SL-l, SL-2 and SL-3 were purified by solvent extractions and HPLC.SL-2 was crystallized in benzene-diethyl ether solvent. On the EI-MS spectra, it was found that they had three bromines in their structure which showed typical signal strength ratios at $M^+, [M+2]^+, [M+4]^+, [M+6]^+ (13: 38: 37: 12)$. $SL-l$ was identified as 2,3,6-tribromo-4,5-dihydroxybenzyl alcohol ($C_8H_7Br_3O_3, MW=374$) by NMR and MS spectra. SL-2 was assigned as 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether ($C_8H_7Br_3O_3, MW=388$) and confirmed by X-ray crystallographic analysis. SL-3 was presumed as an isomer of SL-2. Methanol extract of the S. latiuscula showed antimicrobial activities against all strains tested (bacteria, 15 strains; yeasts, 17 strains; fungi, 4 strains), much or less. The strongest inhibition activity of the methanol extract was to the Vibrio mimicus ($50 {\mu}g/ml$) and V. vulnificus ($50 {\mu}g/ml$). The mice injected intraperitoneally with 3 mg of SL-l and 5 mg of 5L-2 showed no acute toxicity response. SL-2 showed higher desmutagenic activity than SL-l against PhIP and MeIQx.

  • PDF

Ceramium boydenii, a Red Alga, Inhibits MDC/CCL22 Production Via Suppression of STAT1 Activation in HaCaT Keratinocyte (HaCaT 각질형성세포에서 홍조류인 단박(Ceramium boydenii)의 STAT1 활성 억제를 통한 MDC/CCL22 생성 억제 효과)

  • Kang, Na-Jin;Kang, Gyeung-Jin;Han, Sang-Chul;Hyun, Eun-A;Koo, Dong-Hwan;Koh, Young-Sang;Ko, Mi-Hee;Hyun, Jin Won;Kang, Hee-Kyoung;Yoo, Eun-Sook
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.2
    • /
    • pp.154-160
    • /
    • 2013
  • Ceramium boydenii belongs to euphorbia humitusa of red algae, and is distributed along the coast of Jeju island. This study was conducted to examine the anti-inflammatory effect and action mechanism of C. boydenii in the human keratinocyte cell line HaCaT. The 80% EtOH extract of C. boydenii inhibits the production of MDC (macrophage derived chemokine), an inflammatory chemokine, induced by IFN-${\gamma}$ and TNF-${\alpha}$ in a concentration dependent manner. It also suppressed the phosphorylation and nuclear translocation of STAT1, a key transcription factor in IFN-${\gamma}$ and TNF-${\alpha}$ signaling pathway, at the effective concentrations. These results suggest that C. boydenii demonstrates the anti-inflammatory activity via the suppression of STAT1 activation and has the significant value as an anti-inflammatory source.

Influence of High Light and Nitrate Deprivation on the Carotenoid Biosynthesis in Haematococcus pluvialis (고광도와 질소 결핍이 Haematococcus pluvialis의 색소 생합성에 미치는 영향)

  • Yun, Ji-Hyun;Kwak, In-Kyu;Jin, Eon-Seon
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.4
    • /
    • pp.292-297
    • /
    • 2007
  • The unicellular green alga, Haematococcus pluvialis used as a biological production system for astaxanthin. It accumulates large amounts of the red ketocarotenoid astaxanthin when exposed to various environmental stress such as active oxygen species and high light intensities. To induce astaxanthin biosynthesis of H. pluvialis, cells were incubated in either nitrate free at $25^{\circ}C$ under continuous high light intensity ($1,000\;{\mu}mol$ photons $m^{-2}s^{-1}$) for 2 days or high light stress only. Expressions of astaxanthin biosynthetic genes such as carotenoid hydroxylase, IPP isomerase and ${\beta}$-carotene ketolase were monitored under different culture conditions by using real time RT-PCR. All the subjected genes increased their expression under highlight and N-deprivation condition where a large amount of astaxanthin was accumulated.

Seasonal Variation in Subtidal Seaweed Community Structure at Hajung, on the Southeast Coast of Korea (동해안 남부 하정 연안의 조하대 해조류 군집구조의 계절적 변화)

  • Kim, Young-Dae;Park, Mi-Seon;Yoo, Hyun-Il;Min, Byung-Hwa;Moon, Tae-Seok;Choi, Han-Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.740-746
    • /
    • 2011
  • Subtidal benthic macroalgal flora and community structure on barren grounds were examined seasonally along vertical shore gradients on the rocky shore of Hajung, Pohang, on the southeast coast of Korea, from February 2005 to November 2006. Twenty-six seaweed species were identified, including 5 green, 7 brown, and 14 red algae. The number of seaweed species ranged between 7 and 17 among seasons and between 13 and 20 species were found in vertical gradients along the shore. Over the study period, average seaweed biomass (g wet wt/$m^2$) was 299.88 g and it ranged seasonally from 120.99 to 620.00 g. Seaweed biomass declined with increasing seawater depth and ranged between 323.06 and 593.68 g. The dominant seaweed species, in terms of biomass, were Desmarestia ligulata and Sargassum honeri, which grew at depths between 5 and 10 m. The red alga Delisea pulchra was also abundant at a depth of 15 m. No seasonal patterns were found in community indices. Along vertical shore gradients, community indices showed different patterns; the dominance index increased and the richness, evenness, and diversity indices decreased with seawater depth.

Dynamics of spermatial nuclei in trichogyne of the red alga Bostrychia moritziana (Florideophyceae)

  • Shim, Eunyoung;Park, Hana;Im, Soo Hyun;Zuccarello, Giuseppe C.;Kim, Gwang Hoon
    • ALGAE
    • /
    • v.35 no.4
    • /
    • pp.389-404
    • /
    • 2020
  • Red algal fertilization is unusual and offers a different model to the mechanism of intracellular transport of nuclei and polyspermy blocking. A female carpogonium (egg) undergoes plasmogamy with many spermatia (sperm) simultaneously at the receptive structure, trichogyne, which often contains numerous male nuclei. The pattern of selective transport of a male nucleus to the female nucleus, located in the cell body of the carpogonium, remain largely unknown. We tracked the movement of spermatial nuclei and cell organelles in the trichogyne after plasmogamy using time-lapse videography and fluorescent probes. The fertilization process of Bostrychia moritziana is composed of five distinctive stages: 1) gamete-gamete binding; 2) mitosis in the attached spermatia; 3) formation of a fertilization channel; 4) migration of spermatial nuclei into the trichogyne; and 5) cutting off of the trichogyne cytoplasm from the rest of the cell after karyogamy. Our results showed that actin microfilaments were involved in the above steps of fertilization, microtubules are involved only in spermatial mitosis. Time-lapse videography showed that the first ("primary") nucleus which entered to trichogyne moved quickly to the base of carpogonium and fused with the female nucleus. The transport of the primary male nucleus to the egg nucleus was complete before its second nucleus migrated into the trichogyne. Male nuclei from other spermatia stopped directional movement soon after the first one entered the carpogonial base and oscillated near where they entered trichogyne. The cytoplasm of the trichogyne was cut off at a narrow neck connecting the trichogyne and carpogonial base after gamete nuclear fusion but gamete binding and plasmogamy continued on the trichogyne. Spermatial organelles, including mitochondria, entered the trichogyne together with the nuclei but did not show any directional movement and remained close to where they entered. These results suggest that polyspermy blocking in B. moritziana is achieved by the selective and rapid transport of the first nucleus entered trichogyne and the rupture of the trichogyne after gamete karyogamy.

Cholinesterase inhibitory activities of neuroprotective fraction derived from red alga Gracilaria manilaensis

  • Pang, Jun-Rui;How, Sher-Wei;Wong, Kah-Hui;Lim, Siew-Huah;Phang, Siew-Moi;Yow, Yoon-Yen
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.2
    • /
    • pp.49-63
    • /
    • 2022
  • Anti-cholinesterase (ChE)s are commonly prescribed as the symptomatic treatment of Alzheimer's disease. They are applied to prevent the breakdown of neurotransmitter acetylcholine (ACh) that bind to muscarinic and nicotinic receptors in the synaptic cleft. Seaweeds are one of the richest sources of bioactive compounds for both nutraceuticals and pharmacognosy applications. This study aimed to determine the anti-ChEs activity of Gracilaria manilaensis, one of the red seaweeds notables for its economic importance as food and raw materials for agar production. Methanol extracts (GMM) of G. manilaensis were prepared through maceration, and further purified with column chromatography into a semi-pure fraction. Ellman assay was carried out to determine the anti-acetylcholinesterase (AChE) and anti-butyrylcholinesterase (BuChE) activities of extracts and fractions. Lineweaver-Burk plot analysis was carried out to determine the inhibition kinetic of potent extract and fraction. Major compound(s) from the most potent fraction was determined by liquid chromatography-mass spectrometry (LCMS). GMM and fraction G (GMMG) showed significant inhibitory activity AChE with EC50 of 2.6 mg/mL and 2.3 mg/mL respectively. GMM and GMMG exhibit mixed-inhibition and uncompetitive inhibition respectively against AChE. GMMG possesses neuroprotective compounds such as cynerine A, graveolinine, militarinone A, eplerenone and curumenol. These findings showed a promising insight of G. manilaensis to be served as a nutraceutical for neuronal health care in the future.

Physiological and transcriptome analysis of acclimatory response to cold stress in marine red alga Pyropia yezoensis

  • Li-Hong Ma;Lin Tian;Yu-Qing Wang;Cong-Ying Xie;Guo-Ying Du
    • ALGAE
    • /
    • v.39 no.1
    • /
    • pp.17-30
    • /
    • 2024
  • Red macroalga Pyropia yezoensis is a high valuable cultivated marine crop. Its acclimation to cold stress is especially important for long cultivation period across winter in coasts of warm temperate zone in East Asia. In this study, the response of P. yezoensis thalli to low temperature was analyzed on physiology and transcriptome level, to explore its acclimation mechanism to cold stress. The results showed that the practical photosynthesis activity (indicated by ΦPSII and qP) was depressed and pigment allophycocyanin content was decreased during the cold stress of 48 h. However, the Fv/Fm and non-photochemical quenching increased significantly after 24 h, and the average growth rate of thalli also rebounded from 24 to 48 h, indicating a certain extent of acclimation to cold stress. On transcriptionally, the low temperature promoted the expression of differentially expressed genes (DEGs) related to carbohydrate metabolism and energy metabolism, while genes related to photosynthetic system were depressed. The increased expression of DEGs involved in ribosomal biogenesis and lipid metabolism which could accelerate protein synthesis and enhance the degree of fatty acid unsaturation, might help P. yezoensis thallus cells to cope with cold stress. Further co-expression network analysis revealed differential expression trends along with stress time, and corresponding hub genes play important roles in the systemic acquired acclimation to cold stress. This study provides basic mechanisms of P. yezoensis acclimation to cold temperature and may aid in exploration of functional genes for genetic breeding of economic macroalgae.

Phycobilisome composition in Chondrus crispus (Gigartinales, Rhodophyta) from a wild type strain and its vegetatively derived green mutant

  • Cornish, M. Lynn;O' Leary, Stephen J.B.;Garbary, David J.
    • ALGAE
    • /
    • v.28 no.1
    • /
    • pp.121-129
    • /
    • 2013
  • Intact phycobilisomes from a wild-type red Chondrus crispus and its vegetatively derived green mutant were isolated by centrifugation through a discontinuous sucrose density gradient. Pigment composition was subsequently characterized by spectrophotometry. Vegetative thalli of the two strains grown together for six months in the laboratory resulted in different pigment profiles. Two pigmented phycobilisome bands appeared in the sucrose gradient of the wild-type alga, a purple coloured one, and a pink one, whereas only a single blue band appeared in the gradient of the green mutant. Spectrophotometric and fluorescence analyses identified the phycobiliprotein composition of the purple band as the typical phycoerythrin-phycocyanin-allophycocyanin complement in the wild-type, but there was no detectable phycoerythrin present in the blue band of the green mutant. Sodium dodecyl sulphate, preparative polyacrylamide gel electrophoresis analysis confirmed the presence of allophycocyanin subunits in all extracts, but firm evidence of an R-phycoerythrin linker polypeptide in the blue band was missing. These results highlight the ability of C. crispus to adapt to a phycoerythrin deficiency by adjusting light harvesting pigment ratios.