Dynamics of spermatial nuclei in trichogyne of the red alga Bostrychia moritziana (Florideophyceae)

  • Shim, Eunyoung (Department of Biological Sciences, Kongju National University) ;
  • Park, Hana (Department of Biological Sciences, Kongju National University) ;
  • Im, Soo Hyun (Department of Biological Sciences, Kongju National University) ;
  • Zuccarello, Giuseppe C. (School of Biological Sciences, Victoria University of Wellington) ;
  • Kim, Gwang Hoon (Department of Biological Sciences, Kongju National University)
  • Received : 2020.09.30
  • Accepted : 2020.12.07
  • Published : 2020.12.15


Red algal fertilization is unusual and offers a different model to the mechanism of intracellular transport of nuclei and polyspermy blocking. A female carpogonium (egg) undergoes plasmogamy with many spermatia (sperm) simultaneously at the receptive structure, trichogyne, which often contains numerous male nuclei. The pattern of selective transport of a male nucleus to the female nucleus, located in the cell body of the carpogonium, remain largely unknown. We tracked the movement of spermatial nuclei and cell organelles in the trichogyne after plasmogamy using time-lapse videography and fluorescent probes. The fertilization process of Bostrychia moritziana is composed of five distinctive stages: 1) gamete-gamete binding; 2) mitosis in the attached spermatia; 3) formation of a fertilization channel; 4) migration of spermatial nuclei into the trichogyne; and 5) cutting off of the trichogyne cytoplasm from the rest of the cell after karyogamy. Our results showed that actin microfilaments were involved in the above steps of fertilization, microtubules are involved only in spermatial mitosis. Time-lapse videography showed that the first ("primary") nucleus which entered to trichogyne moved quickly to the base of carpogonium and fused with the female nucleus. The transport of the primary male nucleus to the egg nucleus was complete before its second nucleus migrated into the trichogyne. Male nuclei from other spermatia stopped directional movement soon after the first one entered the carpogonial base and oscillated near where they entered trichogyne. The cytoplasm of the trichogyne was cut off at a narrow neck connecting the trichogyne and carpogonial base after gamete nuclear fusion but gamete binding and plasmogamy continued on the trichogyne. Spermatial organelles, including mitochondria, entered the trichogyne together with the nuclei but did not show any directional movement and remained close to where they entered. These results suggest that polyspermy blocking in B. moritziana is achieved by the selective and rapid transport of the first nucleus entered trichogyne and the rupture of the trichogyne after gamete karyogamy.



We thank Kongju National University internal grant for the sabbatical leave of GHK. This research was supported by Marine Biotechnology Program of the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (MOF) (No. 20170431) and the National Research Foundation of Korea (NRF) grant (No. 2019M3C1B7025093) to GHK.


  1. Bhattacharya, D., Price, D. C., Chan, C. X., Qiu, H., Rose, N., Ball, S., Weber, A. P. M., Arias, M. C., Henrissat, B., Coutinho, P. M., Krishnan, A., Zauner, S., Morath, S., Hilliou, F., Egizi, A., Perrineau, M. -M. & Yoon, H. S. 2013. Genome of the red alga Porphyridium purpureum. Nat. Commun. 4:1941.
  2. Bianchi, E. & Wright, G. J. 2014. Izumo meets Juno: preventing polyspermy in fertilization. Cell Cycle 13:2019-2020.
  3. Brawley, S. H. 1987. A sodium-dependent, fast block to polyspermy occurs in eggs of fucoid algae. Dev. Biol. 124:390-397.
  4. Brawley, S. H. 1990. The polyspermy block in fucoid algae. In Wiessner, W., Robinson, D. G. & Starr, R. C. (Eds.) Cell Walls and Surfaces, Reproduction, Photosynthesis. Experimental Phycology, Vol. 1. Springer-Verlag, Berlin, pp. 134-144.
  5. Brawley, S. H. 1991. The fast block against polyspermy in fucoid algae is an electrical block. Dev. Biol. 144:94-106.
  6. Brawley, S. H. & Bell, E. 1987. Partial activation of Fucus eggs with calcium ionophores and low-sodium seawater. Dev. Biol. 122:217-226.
  7. Brawley, S. H., Blouin, N. A., Ficko-Blean, E., Wheeler, G. L., Lohr, M., Goodson, H. V., Jenkins, J. W., Blaby-Haas, C. E., Helliwell, K. E., Chan, C. X., Marriage, T. N., Bhattacharya, D., Klein, A. S., Badis, Y., Brodie, J., Cao, Y., Collen, J., Dittami, S. M., Gachon, C. M. M., Green, B. R., Karpowicz, S. J., Kim, J. W., Kudahl, U. J., Lin, S., Michel, G., Mittag, M., Olson, B. J. S. C., Pangilinan, J. L., Peng, Y., Qiu, H., Shu, S., Singer, J. T., Smith, A. G., Sprecher, B. N., Wagner, V., Wang, W., Wang, Z. -Y., Yan, J., Yarish, C., Zauner-Riek, S., Zhuang, Y., Zou, Y., Lindquist, E. A., Grimwood, J., Barry, K. W., Rokhsar, D. S., Schmutz, J., Stiller, J. W., Grossman, A. R. & Prochnik, S. E. 2017. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proc. Natl. Acad. Sci. U. S. A. 114:E6361-E6370.
  8. Broadwater, S. T. & Scott, J. 1982. Ultrastructure of early development in the female reproductive system of Polysiponia harveyi Bailey (Ceramiales, Rhodophyta). J. Phycol. 18:427-441.
  9. Broadwater, S. T., Scott, J. L. & West, J. A. 1991. Spermatial appendages of Spyridia filamentosa (Ceramiaceae, Rhodophyta). Phycologia 30:189-195.
  10. Collen, J., Porcel, B., Carre, W., Ball, S. G., Chaparro, C., Tonon, T., Barbeyron, T., Michel, G., Noel, B., Valentin, K., Elias, M., Artiguenave, F., Arun, A., Aury, J. -M., Barbosa-Neto, J. F., Bothwell, J. H., Bouget, F. -Y., Brillet, L., Cabello-Hurtado, F., Capella-Gutierrez, S., Charrier, B., Cladiere, L., Cock, J. M., Coelho, S. M., Colleoni, C., Czjzek, M., Da Silva, C., Delage, L., Denoeud, F., Deschamps, P., Dittami, S. M., Gabaldon, T., Gachon, C. M. M., Groisillier, A., Herve, C., Jabbari, K., Katinka, M., Kloareg, B., Kowalczyk, N., Labadie, K., Leblanc, C., Lopez, P. J., McLachlan, D. H., Meslet-Cladiere, L., Moustafa, A., Nehr, Z., Collen, P. N., Panaud, O., Partensky, F., Poulain, J., Rensing, S. A., Rousvoal, S., Samson, G., Symeonidi, A., Weissenbach, J., Zambounis, A., Wincker, P. & Boyen, C. 2013. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc. Natl. Acad. Sci. U. S. A. 110:5247-5252.
  11. Coy, P. & Aviles, M. 2009. What controls polyspermy in mammals, the oviduct or the oocyte? Biol. Rev. 85:593-605.
  12. Ferris, P. J., Woessner, J. P. & Goodenough, U. W. 1996. A sex recognition glycoprotein is encoded by the plus mating-type gene fus1 of Chlamydomonas reinhardtii. Mol. Biol. Cell 7:1235-1248.
  13. Fetter, R. & Neushul, M. 1981. Studies on developing and released spermatia in the red alga, Tiffaniella snyderae (Rhodophyta). J. Phycol. 17:141-159.
  14. Gould-Somero, M., Jaffe, L. A. & Holland, L. Z. 1979. Electrically mediated fast polyspermy block in eggs of the marine worm, Urechis caupo. J. Cell Biol. 82:426-440.
  15. Han, J. W., Klochkova, T. A., Shim, J. B., Yoon, K. & Kim, G. H. 2012. Isolation and characterization of a sex-specific lectin in a marine red alga, Aglaothamnion oosumiense Itono. Appl. Environ. Microbiol. 78:7283-7289.
  16. Hemmings, N. & Birkhead, T. R. 2015. Polyspermy in birds: sperm numbers and embryo survival. Proc. R. Soc. B 282:20151682.
  17. Jaffe, L. A. 1976. Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature 261:68-71.
  18. Johnson, M. A., Harper, J. F. & Palanivelu, R. 2019. A fruitful journey: pollen tube navigation from germination to fertilization. Annu. Rev. Plant Biol. 70:809-837.
  19. Kim, G. H. & Fritz, L. 1993a. Gamete recognition during fertilization in a red alga Antithamnion nipponicum. Protoplasma 174:69-73.
  20. Kim, G. H. & Fritz, L. 1993b. Ultrastructure and cytochemistry of early spermatangial development in Antithamnion nipponicum (Ceramiaceae, Rhodophyta). J. Phycol. 29:797-805.
  21. Kim, G. H. & Kim, S. -H. 1999a. The role of F-actin during fertilization in the red alga Aglaothamnion oosumiense (Rhodophyta). J. Phycol. 35:806-814.
  22. Kim, G. H., Klochkova, T. A., Yoon, K. -S., Song, Y. -S. & Lee, K. P. 2005. Purification and characterization of a lectin, bryohealin, involved in the protoplast formation of a marine green alga Bryopsis plumosa (Chlorophyta). J. Phycol. 42:86-95.
  23. Kim, G. H., Lee, I. K. & Fritz, L. 1995. The wound-healing responses of Antithamnion nipponicum and Griffithsia pacifica (Ceramiales, Rhodophyta) monitored by lectins. Phycol. Res. 43:161-166.
  24. Kim, S. -H. & Kim, G. H. 1999b. Cell-cell recognition during the fertilization in a red alga Aglaothamnion oosumiense (Ceramiaceae, Rhodophyta). Hydrobiologia 398/399:81-89.
  25. Kranz, E., von Wiegen, P. & Lorz, H. 1995. Early cytological events after induction of cell division in egg cells and zygote development following in vitro fertilization with angiosperms gametes. Plant J. 8:9-23.
  26. Kugrens, P. 1980. Electron microscopic observations on the differentiation and release of spermatia in the marine red alga Polysiphonia hendryi (Ceramiales, Rhodomelaceae). Am. J. Bot. 67:519-528.
  27. Liu, Y., Misamore, M. J. & Snell, W. J. 2010. Membrane fusion triggers rapid degradation of two gamete-specific, fusion-essential proteins in al membrane block to polygamy in Chlamydomonas. Development 137:1473-1481.
  28. Liu, Y., Tewari, R., Ning, J., Blagborough, A. M., Garbom, S., Pei, J., Grishin, N. V., Steele, R. E., Sinde, R. E., Snell, W. J. & Billker, O. 2008. The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes. Genes Dev. 22:1051-1068.
  29. Magruder, W. H. 1984. Reproduction and life history of the red alga Galaxaura oblongata (Nemaliales, Galaxauraceae). J. Phycol. 20:402-409.
  30. Maruyama, D., Volz, R., Takeuchi, H., Mori, T., Igawa, T., Kurihara, D., Kawashima, T., Ueda, M., Ito, M., Umeda, M., Nishikawa, S. -I., Gross-Hardt, R. & Higashiyama, T. 2015. Rapid elimination of the persistent synergid through a cell fusion mechanism. Cell 161:907-918.
  31. Matsuzaki, M., Misumi, O., Shin-I, T., Maruyama, S., Takahara, M., Miyagishima, S. -Y., Mori, T., Nishida, K., Yagisawa, F., Nishida, K., Yoshida, Y., Nishimura, Y., Nakao, S., Kobayashi, T., Momoyama, Y., Higashiyama, T., Minoda, A., Sano, M., Nomoto, H., Oishi, K., Hayashi, H., Ohta, F., Nishizaka, S., Haga, S., Miura, S., Morishita, T., Kabeya, Y., Terasawa, K., Suzuki, Y., Ishii, Y., Asakawa, S., Takano, H., Ohta, N., Kuroiwa, H., Tanaka, K., Shimizu, N., Sugano, S., Sato, N., Nozaki, H., Ogasawara, N., Kohara, Y. & Kuroiwa, T. 2004. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653-657.
  32. Mine, I. & Tatewaki, M. 1994. Gamete surface and attachment during fertilization of Palmaria sp. (Palmariales, Rhodophyta). Jpn. J. Phycol. 42:291-299.
  33. Mio, Y., Iwata, K., Yumoto, K., Kai, Y., Sargant, H. C., Mizoguchi, C., Ueda, M., Tsuchie, Y., Imajo, A., Iba, Y. & Nishikori, K. 2012. Possible mechanism of polyspermy block in human oocytes observed by time-lapse cinematography. J. Assist. Reprod. Genet. 29:951-956.
  34. Misamore, M. J., Gupta, S. & Snell, W. J. 2003. The Chlamydomonas Fus1 protein is present on the mating type plus fusion organelle and required for a critical membrane adhesion event during fusion with minus gametes. Mol. Biol. Cell 14:2530-2542.
  35. Nakamura, Y., Sasaki, N., Kobayashi, M., Ojima, N., Yasuike, M., Shigenobu, Y., Satomi, M., Fukuma, Y., Shiwaku, K., Tsujimoto, A., Kobayashi, T., Nakayama, I., Ito, F., Nakajima, K., Sano, M., Wada, T., Kuhara, S., Inouye, K., Gojobori, T. & Ikeo, K. 2013. The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS ONE 8:e57122.
  36. Pickett-Heaps, J. & West, J. 1998. Time-lapse video observations on sexual plasmogamy in the red alga Bostrychia. Eur. J. Phycol. 33:43-56.
  37. Pueschel, C. M. 1990. Cell structure. In Cole, K. M. & Sheath, R. G. (Eds.) Biology of the Red Algae. Cambridge University Press, Cambridge, pp. 7-41.
  38. Russell, S. D. 1993. The egg cell: development and role in fertilization and early embryogenesis. Plant Cell 5:1349-1359.
  39. Schonknecht, G., Chen, W. -H., Ternes, C. M., Barbier, G. G., Shrestha, R. P., Stanke, M., Brautigam, A., Baker, B. J., Banfield, J. F., Garavito, R. M., Carr, K., Wilkerson, C., Rensing, S. A., Gagneul, D., Dickenson, N. E., Oesterhelt, C., Lercher, M. J. & Weber, A. P. M. 2013. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207-1210.
  40. Searles, R. B. 1980. The strategy of the red algal life history. Am. Nat. 115:113-120.
  41. Shim, E., Shim, J., Klochkova, T. A., Han, J. W. & Kim, G. H. 2012. Purification of a sex-specific lectin in gamete binding of Aglaothamnion callophyllidicola (Rhodophyta). J. Phycol. 48:916-924.
  42. Tekleyohans, D. G. & Gross‐Hardt, R. 2019. New advances and future directions in plant polyspermy. Mol. Reprod. Dev. 87:370-373.
  43. Tekleyohans, D. G., Mao, Y., Kagi, C., Stierhof, Y. -D. & Gross-Hardt, R. 2017. Polyspermy barriers: a plant perspective. Curr. Opin. Plant Biol. 35:131-137.
  44. Toda, E., Ohnishi, Y. & Okamoto, T. 2016. Development of polyspermic rice zygotes. Plant Physiol. 171:206-214.
  45. Traas, J. A., Doonan, J. H., Rawlins, D. J., Shaw, P. J., Watts, J. & Lloyd, C. W. 1987. An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus. J. Cell Biol. 105:387-395.
  46. Volz, R., Heydlauff, J., Ripper, D., von Lyncker, L. & Gross-Hardt, R. 2013. Ethylene signaling is required for synergid degeneration and the establishment of a pollen tube block. Dev. Cell 25:310-316.
  47. Wieland, T., Miura, T. & Seeliger, A. 1983. Analogs of phalloidin: D-Abu2-Lys7-phalloin, an F-actin binding analog, its rhodamine conjugate (RLP) a novel fluorescent F-actin-probe, and D-Ala2-Leu7-phalloin, an inert peptide. Int. J. Pept. Protein Res. 21:3-10.
  48. Wilson, S. M., Pickett-heaps, J. D. & West, J. A. 2002. Fertilization and the cytoskeleton in the red alga Bostrychia moritziana (Rhodomelaceae, Rhodophyta). Eur. J. Phycol. 37:509-522.
  49. Zuccarello, G. C., Burger, G., West, J. A. & King, R. J. 1999a. A mitochondrial marker for red algal intraspecific relationships. Mol. Ecol. 8:1443-1447.
  50. Zuccarello, G. C., West, J. A., Kamiya, M. & King, R. J. 1999b. A rapid method to score plastid haplotypes in red seaweeds and its use in determining parental inheritance of plastids in the red alga Bostrychia (Ceramiales). Hydrobiologia 401:207-214.