• Title/Summary/Keyword: recursive neural network

Search Result 70, Processing Time 0.019 seconds

MODELLING THE DYNAMICS OF THE LEAD BISMUTH EUTECTIC EXPERIMENTAL ACCELERATOR DRIVEN SYSTEM BY AN INFINITE IMPULSE RESPONSE LOCALLY RECURRENT NEURAL NETWORK

  • Zio, Enrico;Pedroni, Nicola;Broggi, Matteo;Golea, Lucia Roxana
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1293-1306
    • /
    • 2009
  • In this paper, an infinite impulse response locally recurrent neural network (IIR-LRNN) is employed for modelling the dynamics of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS). The network is trained by recursive back-propagation (RBP) and its ability in estimating transients is tested under various conditions. The results demonstrate the robustness of the locally recurrent scheme in the reconstruction of complex nonlinear dynamic relationships.

Performance of Adaptive Correlator using Recursive Least Square Backpropagation Neural Network in DS/SS Mobile Communication Systems (DS/SS 이동 통신에서 반복적 최소 자승 역전파 신경망을 이용한 적응 상관기)

  • Jeong, Woo-Yeol;Kim, Hwan-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.79-84
    • /
    • 1996
  • In this paper, adaptive correlator model using backpropagation neural network based on complex multilayer perceptron is presented for suppressing interference of narrow-band of direct sequence spread spectrum receiver in CDMA mobile communication systems. Recursive least square backpropagation algorithm with backpropagation error is used for fast convergence and better performance in adaptive correlator scheme. According to signal noise ratio and transmission power ratio, computer simulation results show that bit error ratio of adaptive correlator uswing backpropagation neural network improved than that of adaptive transversal filter of direct sequence spread spectrum considering of co-channel and narrow-band interference. Bit error ratio of adaptive correlator using backpropagation neural network is reduced about $10^{-1}$ than that of adaptive transversal filter where interference versus signal ratio is 5 dB.

  • PDF

Adaptive Milling Process Modeling and Nerual Networks Applied to Tool Wear Monitoring (밀링공정의 적응모델링과 공구마모 검출을 위한 신경회로망의 적용)

  • Ko, Tae-Jo;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.138-149
    • /
    • 1994
  • This paper introduces a new monitoring technique which utilizes an adaptive signal processing for feature generation, coupled with a multilayered merual network for pattern recognition. The cutting force signal in face milling operation was modeled by a low order discrete autoregressive model, shere parameters were estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(recursive least square) method with discounted measurements. The influences of the adaptation algorithm parameters as well as some considerations for modeling on the estimation results are discussed. The sensitivity of the extimated model parameters to the tool state(new and worn tool)is presented, and the application of a multilayered neural network to tool state monitoring using the previously generated features is also demonstrated with a high success rate. The methodology turned out to be quite suitable for in-process tool wear monitoring in the sense that the model parameters are effective as tool state features in milling operation and that the classifier successfully maps the sensors data to correct output decision.

  • PDF

Rejection of Interference Signal Using Neural Network in Multi-path Channel Systems (다중 경로 채널 시스템에서 신경회로망을 이용한 간섭 신호 제거)

  • 석경휴
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.357-360
    • /
    • 1998
  • DS/CDMA system rejected narrow-band interference and additional White Gaussian noise which are occured at multipath, intentional jammer and multiuser to share same bandwidth in mobile communication systems. Because of having not sufficiently obtained processing gain which is related to system performance, they were not effectively suppressed. In this paper, an matched filter channel model using backpropagation neural network based on complex multilayer perceptron is presented for suppressing interference of narrow-band of direct sequence spread spectrum receiver in DS/CDMA mobile communication systems. Recursive least square backpropagation algorithm with backpropagation error is used for fast convergence and better performance in matched filter receiver scheme. According to signal noise ratio and transmission power ratio, computer simulation results show that bit error ratio of matched filter using backpropagation neural network improved than that of RAKE receiver of direct sequence spread spectrum considering of con-channel and narrow-band interference.

  • PDF

Comparison of Different Schemes for Speed Sensorless Control of Induction Motor Drives by Neural Network (유도전동기의 속도 센서리스 제어를 위한 신경회로망 알고리즘의 추정 특성 비교)

  • 이경훈;국윤상;김윤호;최원범
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.526-530
    • /
    • 1999
  • This paper presents a newly developed speed sensorless drive using Neural Network algorithm. Neural Network algorithm can be divided into three categories. In the first one, a Back Propagation-based NN algorithm is well-known to gradient descent method. In the second scheme, a Extended Kalman Filter-based NN algorithm has just the time varying learning rate. In the last scheme, a Recursive Least Square-based NN algorithm is faster and more stable than the classical back-propagation algorithm for training multilayer perceptrons. The number of iterations required to converge and the mean-squared error between the desired and actual outputs is compared with respect to each method. The theoretical analysis and experimental results are discussed.

  • PDF

A Study On Adaptive Correlator Receiver with Narrow-band Interferance in CDMA System (CDMA System에서 협대역 간섭제거 적응 상관기에 관한 연구)

  • Jeong Chan-Ju;Yang Hwa-Sup;Kim Yong-Shik;Oh Seung-Jae;Kim Jae-Gab
    • Management & Information Systems Review
    • /
    • v.3
    • /
    • pp.201-214
    • /
    • 1999
  • Adaptive correlator receiver with neural network based on complex multilayer perceptron is persented for suppressing interference of narrow-band of direct spread spectrum communication systems. Recursive least square algorithm with backpropagation error is used for fast convergence and better performance in adaptive correlator scheme. According to signal noise and transmission power, computer simulation results show that bit error ratio of adaptive correlator using neural network improved that of adative transversal filter of direct sequence spread spectrum considering of jamming and narrow-band interference. Bit error ratio of adaptive correlator with neural network is reduced about 10-1 than that of adaptive transversal filter where interference versus signal ratio is 5dB.

  • PDF

On-line Modeling for Nonlinear Process Systems using the Adaptive Fuzzy-Neural Network (적응 퍼지-뉴럴 네트워크를 이용한 비선형 공정의 On-line 모델링)

  • Park, Chun-Seong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.537-539
    • /
    • 1998
  • In this paper, we construct the on-line model structure for the nonlinear process systems using the adaptive fuzzy-neural network. Adaptive fuzzy-neural network usually consists of two distinct modifiable structure, with both, the premise and the consequent part. These two parts can be adapted by different optimization methods, which are the hybrid learning procedure combining gradient descent method and least square method. To achieve the on-line model structure, we use the recursive least square method for the consequent parameter identification of nonlinear process. We design the interface between PLC and main computer, and construct the monitoring and control simulator for the nonlinear process. The proposed on-line modeling to real process is carried out to obtain the effective and accurate results.

  • PDF

The development of semi-active suspension controller based on error self recurrent neural networks (오차 자기순환 신경회로망 기반 반능동 현가시스템 제어기 개발)

  • Lee, Chang-Goo;Song, Kwang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.932-940
    • /
    • 1999
  • In this paper, a new neural networks and neural network based sliding mode controller are proposed. The new neural networks are an mor self-recurrent neural networks which use a recursive least squares method for the fast on-line leammg. The error self-recurrent neural networks converge considerably last than the back-prollagation algorithm and have advantage oi bemg less affected by the poor initial weights and learning rate. The controller for suspension system is designed according to sliding mode technique based on new proposed neural networks. In order to adapt shding mode control mnethod, each frame dstance hetween ground and vehcle body is estimated md controller is designed according to estimated neural model. The neural networks based sliding mode controller approves good peiformance throllgh computer sirnulations.

  • PDF

Precision Position Control of PMSM Using Neural Network Disturbance observer and Parameter compensator (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어)

  • 고종선;진달복;이태훈
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.188-195
    • /
    • 2004
  • This paper presents neural load torque observer that is used to deadbeat load torque observer and gain compensation by parameter estimator As a result, the response of the PMSM(permanent magnet synchronous motor) follows that nominal plant. The load torque compensation method is composed of a neural deadbeat observer To reduce the noise effect, the post-filter implemented by MA(moving average) process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller The parameter estimator is combined with a high performance neural load torque observer to resolve the problems. The neural network is trained in on-line phases and it is composed by a feed forward recall and error back-propagation training. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against the load torque and the Parameter variation. A stability and usefulness are verified by computer simulation and experiment.

Problem Solving Path Algorithm in Distance Education Environment

  • Min, Youn-A
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.55-61
    • /
    • 2021
  • As the demand for distance education increases, it is necessary to present a problem solving path through a learning tracking algorithm in order to support the efficient learning of learners. In this paper, we proposed a problem solving path of various difficulty levels in various subjects by supplementing the existing learning tracking algorithm. Through the data set obtained through the path for solving the learner's problem, the path through the prim's minimum Spanning tree was secured, and the optimal problem solving path through the recursive neural network was suggested through the path data set. As a result of the performance evaluation of the contents proposed in this paper, it was confirmed that more than 52% of the test subjects included the problem solving path suggested in the problem solving process, and the problem solving time was also improved by more than 45%.