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In this paper, an infinite impulse response locally recurrent neural network (ITR-LRNN) is employed for modelling the
dynamics of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS). The network is trained by
recursive back-propagation (RBP) and its ability in estimating transients is tested under various conditions. The results
demonstrate the robustness of the locally recurrent scheme in the reconstruction of complex nonlinear dynamic relationships.
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1. INTRODUCTION

System and process monitoring by empirical techniques
is becoming very popular in various fields of engineering,
physics, biology, and medicine, because it does not require
a detailed physical understanding of the process nor
knowledge of the material properties, geometry and other
characteristics of the system and its components, which
are often lacking in real, practical cases. The underlying
process model is identified by fitting measured process
data, a procedure which is often referred to as ‘learning’
or ‘training’.

Artificial Neural Networks (ANNs) are among the
most powerful algorithms for empirical modelling. In
general terms, they are computing devices inspired by the
function of the nerve cells in the brain. They are composed
of many parallel, interconnected computing units; each of
these performs a few simple operations and communicates
the results to its neighbouring units. In contrast to conventional
modelling, ANNs can learn the required input/output
relationship, possibly nonlinear, by a process of training
on many: different input/output examples. They are also
very effective in learning patterns in data that are noisy,
incomplete and which may even contain contradictory
examples.

Whereas feedforward neural networks can model static
input/output mappings but do not have the capability of
reproducing the behaviour of dynamic systems, dynamic
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Recurrent Neural Networks (RNNs) are recently attracting
significant attention, because of their potential in temporal
processing.

In particular, Infinite Impulse Response Locally
Recurrent Neural Networks (IIR-LRNNs) have proven
capable of providing accurate approximations of the
dynamic behaviour of nonlinear systems [1-3]. The time
dependencies on the previous input values and system
states are accounted for by adding to the otherwise classical
ANN architecture tapped-delay-lines (temporal buffers) to
the inputs of each network layer and by inserting internal
recurrence, i.e., feeding back the outputs of the neurons
of a given layer in input to the neurons of the same layer.

In a previous paper [4], an IIR-LRNN application was
considered, regarding the modelling of the nonlinear, time-
dependent relationships between measurable, physical
variables and safety-significant system state variables in a
next-generation, sub-critical fast reactor, the Lead Bismuth
eXperimental Accelerator Driven System (LBE-XADS)
[5,6]. In particular, the focus of the paper was the comparison
between batch and on-line recursive algorithms for IIR-
LRNN training; the case study proposed in [4] was aimed
at testing the capability of the IIR-LRNN to recover the
transient behaviour of an evolving system, i.e., a system
whose underlying physical parameters change in time, e.g.,
because of ageing, degradation or unexpected modification
of the system. The present paper extends the work in [4]
by considering a number of additional performance tests
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of the IIR-LRNN under various different operating conditions:
in particular, interpolation and extrapolation tasks, as well
as fault tolerance due to incomplete or erroneous data and
transient recovery from arbitrary initial conditions, are
performed. To keep the presentation simple, only the batch
mode of recursive training is considered here.

In Section 2, the IIR-LRNN architecture and the
Recursive Back-Propagation (RBP) algorithm for the
network training are presented. In Section 3, a mechanistic
model of the LBE-XADS is introduced. This model is
used to generate the transients for training and testing an
IIR-LRNN under various challenging conditions of realistic
operation. The results obtained by the trained network are
analyzed in detail. Finally, some thoughts are expressed
in Section 4 with regards to the future of these modelling
techniques in safety-related applications.

2w

2. LOCALLY RECURRENT NEURAL NETWORKS

2.1 lIR-LRNN Architecture and Forward Calculation

An IIR-LRNN is a time-discrete network consisting
of a global feed-forward structure of nodes interconnected
by synapses which link the nodes of the -th layer to those
of the successive (k+ 1)-th layers, k=0, 1, ..., M, layer O
being the input and M the output. Different from the classical
static feedforward neural networks, in an IIR-LRNN each
synapse carries taps and feedback connections. Analogous
to the classical static feedforward neural network, all data
are normalized in a properly chosen range before being
processed by the network.

For simplicity of illustration, and with no loss of
generality, we start by considering a network constituted
by only one hidden layer, i.e., M=2, like the one in Figure
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Fig. 1. Scheme of an ITR-LRNN with One Hidden Layer
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1. At the generic time ¢, the input to the IIR-LRNN consists
of the pattern x(1) ER"’, whose components feed the nodes
of the input layer 0 which simply transmit in output the
input received, i.e., xa(f) =x.(f), m=1,2,...,N°. A bias
node is also typically inserted, with the index m =0, such
that x§(#)=1 for all values of . The output variable of the
m-th input node at time ¢ is tapped a number of delays
L'm—1 (except for the bias node output which is not tapped,
i.e., L—1=0) so that from each input node m#0 actually
L' values, x0(2), xm(t=1), x3(t-2),..., x3(t-L%. + 1), are
processed forward through the synapses connecting the
input node m to the generic hidden node n=1, 2, ... N..
The L), values sent from the input node m to the hidden
node # are first multiplied by the respective synaptic
weights Wi, p = 0, 1, ..., L4 —1 being the index of the
tap delay (the synaptic weight whoe, connecting the bias
input node m =0 is the bias value itself) and then processed
by a summation operator. The weighed sum thereby
obtained, y,., is fed back, for a given number of delays
Im(I'0= 0 for the bias node) and weighed by the coefficient
Vi to the summation operator itself to give the output
quantity. Thus, the value transferred via the connection
between the generic nodes m of the input layer and # of
the hidden layer is

Ly~ L
1 _ 1 0 t 1
ymn ([) - anm(p) ' xn (I - p) + zvnm(p) ’ ynm (t - p) (1)
p=0 p=t

Note that in a classical static ANN the connection between
the two nodes would simply transfer the quantity w',. - x3(%).

Also, as mentioned above, the index m =0 usually
represents the bias input node, such that x3(¢) is equal to
one for all values of 7, L},o— 1 =1%,=0 and thus y%6(t) = who).
The quantities y}.(7), m=0, 1, ..., N°, are summed to obtain
the net input s.(7) to the nonlinear activation function f'("),
typically a sigmoidal Fermi function, of the n-th hidden
node, n=1,2, ..., N"

sy =3yl (1) o)

m=0

The output of the activation function gives the state of the
n-th hidden neuron, x(?):

x (0= s, (] 3

The output values of the nodes of the hidden layer 1, x\(¢),
n=12,... N' are then processed forward along the synaptic
connections linking the hidden and output nodes in a
manner which is analogous to the processing between the
input and hidden layers.
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A bias node with index-m =0 is also-typically inserted
in the hidden layer 1, such that xi4(f)=1 for all values of 7,
and as mentioned before Y¥%(2) = wh).

At the input to the output layer M =2, the quantities
V(®), n=0, 1,..., N', are summed to obtain the net input
s4(¢) to the nonlinear activation function f™(-) so that the
output of the activation function gives the state of the r-
th output neuron, x}(#):

X0 =fMs" 0] @

The extension of the above calculations to the case of
multiple hidden layers (M>2) is straightforward. The time
evolution of the generic neuron j belonging to the generic
layer k=1,2,...,M is described by the following equations:

j=0

1
- {fk [.&ﬂ" (t)} otherwise )

310
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si(t)= g)jyﬁ, (r) ©)

-1 1%
yl;l (t) = Z Vv;[(p) 'ka_} (t —p)+zlu«f1(p) ‘J/Il(~x (’— p) (7)
p=

p=0

2.2 Recursive Back-Propagation (RBP) Algorithm
for Batch-training an IIR-LRNN

The IIR-LRNN bases its dynamic modelling capabilities
on the particular input-output functional form built into
its architecture and on the values of its internal parameters,
i.e., the network weights w/,, and vly,. These latter figures
are calibrated through a training procedure aimed at the
best-fitting set of exemplary trajectories representative of
the dynamic behaviour of the system to be modelled. In
particular, the method adopted here is the RBP training
algorithm [7], a gradient-based minimization algorithm
that makes use of a particular chain rule expansion for the
computation of the necessary derivatives. When used in
batch mode, it is equivalent to Real-Time Recurrent
Learning (RTRL) [8] and Back-Propagation-Through-
Time (BPTT) [9].

For each dynamic trajectory of duration 7 (discretized
in time steps =1,2,...,7) in the training set, the following
steps are taken:

1. Assign at random the values of the network weights
W and Vi, e.g., by uniform sampling in a given
range of values (here, [-0.5, 0.5] for wh,, [-0.1, 0.1]
fOf U}(z(p)).

2. Perform the IIR-LRNN forward calculations (2)-(5)
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for the entire sequence of values of the dynamic trajectory
and save the states x%(¢), j=1,2,....N°, k=0,1,... .M of
the network nodes at all times [1, 7.

3. Start the backward propagation by computing the mean
squared error E* between the network-computed outputs
x*(#) and the corresponding real values on the dynamic

trajectory di?t), r=1,2,...,N*:

T NY

E* =Y [e, O

t=} =l

e, ()=d (-xM(@t) ®

4. Starting from null initial conditions, iteratively compute
the derivatives

fFosp<Li-i

k+l in(1547, k41 k
ayq; (t+p) ) mint 1y, p) " @;qlf (t+p-1) . wq;‘m
0 otherwise

= vV,
axt(h) = )

&)

5. By back-propagating the error from the last layer,
compute the quantities §7'/(¢) and &{¢) for every instant
of time in [1, 7]

s =~ '———fE ="/ (0) (10)

where, f'() is the derivative of the activation function

S and
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e () (eq.8) fork=M
€; O T ay’ffl(,.}.p)
k P k=M-1,M-2,.,1
R ~
an
6. Compute the weight variations Aw/,, and Avjig,
" GE Bt &, i b, &t¢-0)
Wip) = Zas (t) aw,;l(p) —gll& ) x (- P)“"?:,Vﬂm awf,(;,“
(12)
& OB B L A ()
A = = 5 (¢ t=p)+ ) Vi
V/I(p] 2 Z (t) avﬂ(,,) ;/‘ Q) y,/( P) ;" i) av;(m
(13)

where, u is the so-called learning coefficient which
modulates the step along the gradient.
7. Update the weights
The procedure is terminated when the mean squared error
E? falls below a pre-assigned acceptable threshold.

3. IR-LRNN MODEL FOR THE SIMULATION OF
LBE-XADS REACTOR TRANSIENTS

3.1 Model of the LBE-XADS

The Lead-Bismuth Eutectic eXperimental Accelerator

Feedback

.....................

Feedforward

Fig. 2. LBE-XADS Simplified Schematics. A = Accelerator; C = Core; P = Primary Heat Exchanger; S = Secondary Heat
Exchanger; 7% = Pb-Bi Core Outlet Temperature; %5 = Pb-Bi Core Inlet Temperature; P(f) = Reactor Power; /,(f) = Cooler Air
Flow; 73 = Cooler Air Output Temperature [15]
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Driven System (LBE-XADS) is a sub-critical, fast reactor
in which the fission process is sustained by an external
neutron source through the spallation reaction by a proton
beam accelerated by a synchrotron on a lead-bismuth
eutectic target [5,6,10-12]. In the current design [13], the
core contains Uranium and Plutonium dioxide fuel rods;
future developments are aimed at also housing long-lived
transuranic elements. The reactor can be considered “cold”
as the average fuel temperature is about 1073 K [14].

The primary cooling system is the pool-type with
Lead-Bismuth Eutectic (LBE) liquid metal coolant. The
configuration is similar to that of most sodium-cooled
reactors (e.g., the French Phenix and SuperPhenix). A
simplified scheme of the plant is sketched in Figure 2.

The primary coolant leaving the top of the core at
673 K is pushed by natural circulation enhanced by argon
gas injection into the heat exchangers of the secondary
cooling circuit and then re-enters the core from the bottom
through the down-comer at 573 K.

The secondary cooling system is a flow of organic
diathermic oil at 553-593 K, at full power conditions,
through two independent loops, each one consisting of
two intermediate heat exchangers. Cooling of the diathermic
oil in each loop is provided by three air coolers connected
in a series.

A dedicated, dynamic simulation model has been implemented
in SIMULINK for providing a simplified, lumped and
zero-dimensional description of the coupled neutronic
and thermo-hydraulic evolution of the system [15]. The
control is realized by a PID controller designed to keep a
steady state value of 573 K of the average temperature of
the diathermic oil (controlled variable) by manipulating

allows the simulation of the system controlled dynamics
described above as well as of the free dynamics when the
control module is deactivated: in this latter case, neither
feedforward nor feedback actions are taken to regulate
the air cooler flow, which is kept constant regardless of
the reactor power level and of the difference between the
average diathermic oil temperature and its reference value
of 573 K.

The model has been used to simulate transients which
in this work are taken as representative of the real behaviour
of the system; hence, these transients have been used both
as reference trajectories for the IIR-LRNN training and
as terms of comparison for the verification and validation
of the IIR-LRNN’s performance.

3.2 lIR-LRNN Training

In Table 1, the relevant system input variables and the
output quantitics of interest are reported, together with
their corresponding steady state values.

The IIR-LRNN used to model the input-output relationship

Table 2. Structure of the IIR-LRNN for the Simulation of the

LBE-XADS
IIR-LRNN structure
Input nodes (bias included) 7
Hidden nodes (bias included) 6
Output nodes 3

the mass flow rate of air (control variable) on the basis of Type of activation functions (hidden/output nodes) | Sigmoidal
both a feedforward action (whose intensity is governed Ik Hidden (k=1,/=1,2, ...,6,/=1,2, ...5) 3
by the value of the reactor power) and a feedback action Output (k=M =2,1=1,2,...,5,j=1,2,3) 2
(whose intens.ity is gpverned by the difference between Hidden (k=1,1=1,2,...,6,j=1,2, ....5) 9
the average diathermic oil temperature and its reference L 5
value of 573 K) (Fig. 2). In passing, notice that the model Output (k=M=2,1=1,2,....5,j=1,2,3) 3
Table 1. [IR-LRNN Inputs and Outputs
Variable Name Variable Description Steady State Value
[065] Input 1: accelerator driven neutron source 7.3638'10°n/s
T1(2) Input 2: diathermic oil temperature after the oil heat exchanger 5933K
(2 0) Input 3: diathermic oil temperature before the oil-air heat exchanger 553K
Tnput T5(2) Input 4: diathermic oil temperature after the oil-air heat exchanger 5933 K
T4(7) Input 5: diathermic oil temperature before the oil heat exchanger 553K
T3 Input 6: cooler air output temperature 398.15K
TRelt) Output 1: fuel average temperature 10732 K
Output T75(7) Output 2: Pb-Bi eutectic average temperature 625.65 K
P(1) Output 3: reactor power 810''W
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is composed of three layers: the input, with seven nodes
(bias included); the hidden, with six nodes (bias included);
and the output, with three nodes. A sigmoidal activation
function has been adopted for the hidden and output nodes.
The number of taps.and delays have been chosen
experimentally to obtain a satisfactory modelling performance
of the trained IIR-LRNN, measured in terms of a small
Root Mean Square Error (RMSE) of the network estimates
with respect to the model simulated output values. The
IIR-LRNN structure is summarized in Table 2.
Two IIR-LRNNs with this architecture have been trained:
one for the free and one for the controlled dynamics. In
both cases, the training set is made up of N, =100 transients,
each one lasting 7= 1000 seconds. The time-discretization
is made with steps of A¢r=1 s, thus giving rise to patterns
made of 1000 values. All transients have been created by
varying at a random time 7 the value of the external
neutron source from O, to Qv+AQ, the step AQ being
uniformly sampled in [-0.1-0o,0.1-Qs]:

o) 1<T,

0, +AQ T, <t<T=1000s (14)

o) = {

Table 3. Training Parameters of the IIR-LRNN for Simulating

the LBE-XADS
Principal training parameters

Number of transients in the training set 90
Number of patterns in each transient 1000
# (Learning coefficient) 0.001
a (Momentum coefficient) 0
Learning epochs (fpecs) 40
Consecutive repetitions of each transient (#,.,) 10
Data normalization range [0.3;0.7]

Of the N, =100 transients generated, 90 have been used
to train the IIR-LRNN; the remaining 10 have been kept
for validation.

The training procedure has been carried out iteratively
for #ep00 =40 epochs. During each epoch, every transient
is repeatedly presented to the IIR-LRNN for #,,, = 10
consecutive times. The training process is monitored by
computing the RMSE at each learning epoch. The principal
training parameters are summarized in Table 3.

Additional transients have been created for testing
the trained IIR-LRNN. To generate these transients, the
neutron source is varied from its steady state value Q,
according to a random ramp function starting from a random
time 7 and lasting 7, seconds

0, I<T,

%

o0 = QO+AQt;—Ti‘ T <t<T, +T, (15)

0, +AQ T +T, <t <T =1000s

in which AQ is uniformly sampled in [-0.1-0,,0.1-Os].

Training and test transients have been created in such
a way for both the free and controlled dynamic simulations.
All data have been normalized within the range [0.3, 0.7].

Figure 3 and Figure 4 report the RMSE as a function
of the iterative learning epoch, for each of the three
outputs of both the free and controlled dynamics
networks, respectively.

3.3 [IR-LRNN Results

Figure 5 and Figure 6 show the ‘real’ (model-simulated)
and IIR-LRNN-estimated evolution of the three output
quantities for step transients of free and controlled dynamics
different from those used in training, respectively. The IIR-
LRNN estimation of the outputs is in satisfactory agreement
with the real transients, confirming the ability of the IIR-
LRNN to deal with the short-term dynamics governed by
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Fig. 3. RMSE Trend During Training of the Free Dynamics I[IR-LRNN. The RMSE Final Values are (a) 1.08 K (b) 0.78 K (c) 201 [n/s]
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Fig. 6. Controlled Dynamics. Validation Patterns

the instantaneous variations of the forcing function.

The capabilities of the ITR-LRNN have been successfully
verified also on test transients generated by forcing function
variations functionally different from those used in the
training phase, i.e., the ramp variations (15) in the neutron
source (Figure 7 and Figure 8).

Looking more closely at the results of the controlled
dynamics, one can conclude that the trained networks are
capable of reproducing the evolution of the three output
quantities, albeit they introduce some small numerical

NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.10 DECEMBER 2009

oscillations in the power and fuel average temperature,
creating a dependence between the three output variables.

3.4 Tests on the Capabilities of IR-LRNN

To further analyze the capabilities of the IIR-LRNN
and highlight its advantages over the conventional dynamic
modelling approaches, the extrapolation and interpolation
capabilities of the network, its fault tolerance and its
transient recovery capabilities are investigated. This is
done through a number of ad hoc tests, as suggested in [16].
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3.4.1 Extrapolation Tests

One important issue in system modelling is long-term
prediction. For testing the corresponding capabilities of
the trained IIR-LRNN, the following transient lasting T=
2000 s is considered (Figure 9):

o, 1<T,
0, +a0=l0 1 crer

0)=10, +AQ T, 4T, <1<, (16)
0-80=T2 1 cicr, T,
O, T +T,st<T,,

where, Qo =7.3638-10" n/s, AO=0.05-Q, T., =50 s, T,; =
400 s, T,,=1000 s, T.-=1100 s, and T,,=2000 s.

As seen in the Figure, the transient is characterized by
a variation of the neutron source Q(f) made up by two
ramps: the first one is a slow-increasing ramp lasting 450 s
whereas the second one is a fast-decreasing ramp lasting 50 s.

Figure 10 and Figure 11 compare the “real” output
values with the IIR-LRNN predictions for both the free
and controlled dynamics, respectively. Even in the long

1300

term extrapolation part, beyond the usual 1000 s of training
transient duration, the IIR-LRNN provides a very good
prediction.

3.4.2 Interpolation Tests

The interpolation capabilities are tested by training
two new IIR-LRNN:S, for the free and controlled dynamics,
with a data set down—sampled with a 5:1 ratio; that is,
only one datum in every 5 samples is taken for training.
This aspect is important in cases where limitations on the
size of the training data exist or need to be imposed.

The results in Figure 12 and Figure 13 show the “real”
output values and those estimated by the down-sampled
IIR-LRNN for the fully-sampled transient (15); in spite
of the down-sampled training, the network shows good
interpolation capabilities for all output quantities of the
controlled dynamics, with maximum relative errors of
0.0019, 0.0037, 0.0105, for the fuel average temperature,
the Pb-Bi average temperature and the power in the free
dynamics prediction, respectively.

3.4.3 Fault Tolerance Tests

‘During on-line operation, it is possible that the signal
values provided by the sensors might be inaccurate or even
wrong, due to faults or miscalibrations of the components
on the sensing lines. In this respect, it is important to test
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the response of the neural network model developed for  present work, this has been done two ways:
fault tolerance, i.e., when fed with incomplete and/or i) one of the input variables, the diathermic oil temperature
maccurate data because of equipment malfunction. In the after the oil heat exchanger (t,(7)), has been fixed to a
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constant value equal to the lower normalization bound As shown in Figure 14-17, the IIR-LRNN performs
in the training transients (589.94 K), for that input; relatively poorly in both fault tolerance tests compared
ii) the input of the diathermic oil temperature before the ~ with previous performances. This is due to the fact that
oil heat exchanger (t.(1)) has been set to 90% of its  there are only temperature inputs, all bearing equally
actual value. important information to the network, so that the loss of
The motivation beyond the choice of damaging these  one input significantly alters the network outputs compared
inputs is that the challenge to the network modelling  to the case with all valid inputs. Yet, the maximum relative
capabilities is highest, since they fully describe the temporal  errors for the output quantities are limited to 0.0065, 0.0070,
evolution of the diathermic oil in the secondary coolant  0.0106 and 0.0132, 0.0032, 0.0265 for malfunction i) in
loop, with full information about the time-delays in that  the free and controlled dynamics cases, respectively, and
circuit. 0.0069, 0.0148, 0.0251 and 0.0174, 0.0082, 0.0549 for
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malfunction ii) in the free and controlled dynamics cases,
respectively.

3.4.4 Arbitrary Initial Conditions Tests

Model-based predictions, in general, require proper
setting of some internal variables which might create
problems in on-line situations where predictions may be
needed starting from arbitrary initial conditions. These
situations may arise in real-time control and recovery
applications, where sudden variations of the plant state must
be followed and the corresponding transients recovered.

In this respect the IIR-LRNN prediction capabilities
were tested on the transient of 2000 s duration defined in
(16), with starting conditions at £=250 s. As shown in
Figure 18 and Figure 19 for the free and controlled dynamics,
respectively, at the start, the network output presents a
“spike” because of the lack of dynamic information on
the values of the inputs at the previous time instants;
after a few time steps the network stabilizes its outputs,
achieving prediction performances comparable to those
of the network that processes the whole transient from
the initial conditions at t=0 s.

4. CONCLUSIONS

The ability to model dynamic systems has become a
fundamental aspect for the safety of modern industrial
plants. System design and testing, fault diagnosis, and
control design are just a few of the tasks in modern
engineering which rely on the ability of identifying and
modelling dynamic systems. These tasks are particularly
relevant in critical applications, such as nuclear ones.

Many of the analyses needed for the above tasks (e.g.,
sensitivity analysis for the identification of the most
important parameters of a process, probabilistic uncertainty
analysis, on-line and real-time control design) entail several
repeated calculations, thus forbidding the use of large,
detailed dynamic codes due to the impractical computing
times involved. In these cases, one has to resort to either
simplified, reduced analytical models, such as those based
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on lumped effective parameters or empirical models. In
both cases, the model parameters have to be estimated so
as to best fit the available plant data.

With respect to the latter option of empirical modeling,
artificial neural networks are being used with increasing
frequency as an alternative to traditional models in a
variety of engineering applications including monitoring,
prediction, diagnostics, control and safety. Yet, in the
critical safety and control applications required by the
nuclear industry, their acceptance is still very limited,
particularly by the regulatory bodies. A major concern
regarding the use of ANN-based monitoring and diagnostic
systems in nuclear power plants is that their accuracy as
dynamic process estimators must be demonstrated under
various realistic conditions of operation.

In this respect, in the previous paper the dynamic
modelling performance of the so-called infinite impulse
response-locally recurrent neural network (IIR-LRNN)
was studied with reference to the nonlinear dynamics of
an innovative nuclear reactor design, the so-called Lead
Bismuth Eutectic eXperimental Accelerator Driven
System: the main focus of that paper was the comparison
between batch and on-line algorithms to train the IIR-
LRNN architecture.

This paper has extended the previous work by considering
an additional number of performance tests of the IIR-
LRNN under various different conditions of operation; for
simplicity of illustration only the batch mode of recursive
training has been employed.

Two IIR-LRNNSs, one for the free and one for the
controlled dynamics, have been successfully designed and
trained, with a recursive back-propagation (RBP) algorithm,
to reproduce the evolution of a number of relevant system
parameters, knowing the external neutron source, the
diathermic oil temperature and the cooling air evolution.

The modelling and generalization capabilities of the
trained IIR-LRNN have been first validated and tested on
unknown transients of the same temporal length as that
of the training ones: the performance of the IIR-LRNN in
these cases has turned out to be very satisfactory.

Additional tests have been successfully performed
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under various conditions to verify the generalization and
modelling capabilities of the network for i) extrapolation
to transients of duration beyond that of training, ii)
interpolation tasks, iii) for fault tolerance and iv) transients
initiated with arbitrary initial conditions.

As a final remark, the obtained results preliminarily
show the potential feasibility of the use of [IR-LRNN as
a tool for simulating real complex system dynamics under
various challenging conditions; a full verification on
more complex transients and on a wider range of power
manoeuvring (i.e., larger than the 10% variation considered
in this study) will be needed to confirm the capability of
the IIR-LRNN in nuclear applications.
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ACRONYMS AND SYMBOLS

ANN  Artificial Neural Network

LRNN Locally Recurrent Neural Network

HR Infinite Impulse Response

MLP  Multi-Layer Perceptron

RBP  Recursive Back-Propagation

RTRL Real-Time Recurrent Learning

BPTT Back-Propagation-Through-Time

RMSE Root Mean Square Error

LBE-XADS Lead Bismuth Eutectic-eXperimental Accelerator
Driven System

k layer index. In particular, k=0 and k=M denote
the input and the output layers, respectively
Nt number of neurons in the k-th layer. In particular,

N’ and N denote the number of input and output
neurons, respectively

J neuron index
t continuous time index
x%#)  output of the j-th neuron of the 4-th layer, at time ¢.

In particular, ;=0 refers to the bias inputs: x¥(1)=1.
Note that x(#), /=1, 2, ..., N’, are the input signals
order of the MA part of the synapse of the j-th
neuron of the 4-th layer relative to the I-th output
of the (k-1)-th layer. L%>1 and L=

I order of the AR part of the synapse of the j-th
neuron of the k-th layer relative to the [-th output
of the (k-1)-th layer. I;> [ and F% =1

(p=0,1, ..., Li- 1) coefficients of the MA part
of the corresponding synapse. If L= 1, the synapse
has no MA part and the weight notation becomes
wh - who is the bias

(p=1,2, ..., 1) coefficients of the AR part of the
synapse. If /5=1 the synaptic filter is purely MA
nonlinear activation function relative to the A~th
layer

Li—1

Ml(ﬁ)

Vi)

SO
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() derivative of ()

V()  synaptic filter output at time ¢ relative to the synapse
connecting the j-th neuron of the A-th layer to the
[-th input

0] “Net” input fo the activation function of the j-th
neuron of the k-th layer at time ¢

df)y (r=1,2, ..., N) desired target of output node r
at time ¢

M learning coefficient

a momentum coefficient

Mo Number of learning epochs during training

Prep number of consecutive repetitions of each transient
during training

N; number of transients in the training/validation/test set

T temporal length of a transient

At time step for the numerical simulation of a transient

np number of patterns in a training/validation/test
transient, n,=T/At

T, steady-state time interval (in step and ramp forcing
functions)

T, ramp duration (in ramp forcing functions)
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