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Abstract

This paper presents a newly developed speed
sensorless drive using Neural Network algorithm.
Neural Network algorithm can be divided into three
categories. In the first one, a Back
Propagation-based NN algorithm is well-known to
gradient descent method. In the second scheme, a
Extended Kalman Filter-based NN algorithm has
just the time varying learning rate. In the last

scheme, a Recursive Least Square-based NN
algorithm is faster and more stable than the
classical back-propagation algorithm for training

multilayer perceptrons. The humber of iterations
required to converge and the mean-squared error
between the desired and actual outputs is compared
with respect to each method. The theoretical
analysis and experimental results are discussed.

. I . INTRODUCTION

Systern  identification is a process aimed at
establishing an adequate input/output relationship
for unknown systems, and it is usually the first
step taken by control engineers since control theory
requires that we understand a system before we try
to control it. Since the inception of artificial neural
networks(ANN) many researchers have explored a
wide variety of applications including identification
of nonlinear dynamical system. Some of the
advantages of using ANN as the model for system
identification are: (i) ability to approximate arbitrary
nonlinear functions to any degree of accuracy; (ii)
they are adaptive, thus they can take data and learn
from it, often capturing subtle relationships; (iii)
they can generalize, therefore they can handle
corrupt or incomplete data, thus providing a
measure of fault tolerance; and (iv) they are highly
parallel, which allows numerous independent

operations to be executed sirnultaneously[1].

In general, an artificial neural network has a
multilayer network structure. A widely used training
method for a feed-forward multi-layer neural

network (MNN) is the back-propagation algorithm

developed by Rumelhart et al. in 1986, which is an
iterative gradient algorithm designed to minimize the
mean-square error between the desired output and
the actwal output for a particular input to the
network with respect to the weights. Although it
has worked successfully for a wide variety of
applications, the standard back-propagation learning
algorithm have several limitations. The long and
unpredictable  training process is the most
troublesome, for example the rate of convergence is
seriously affected by the initial weights and the
learning rate of the parameters. In general,
increasing the leaming step size can speed up the
convergence rate of the learning process, but it may
also lead to divergence, paralysis, or continuous
instability.

Many researchers have proposed modification of
the classical back—propagation algorithm.

Wasserman incorporates several heuristics laws in
the back-propagation algorithm, but they are
difficult to describe systematically. Singhal and Wu
incorporated a extended Kalman filering to improve
the standard Steepest Descent technique. However, -
the computational complexity of this algorithm
becomes intractable as "the size of the MNN
increases. Recently, another .modified algorithm was
derived by Scalero and Tepedelenliogu as an
alternative to the back-propagation algorithm. It
uses a modified form of the back-propagation
algorithm to minimize the mean-square error
between the desired output and the actual output
with respect to the summation output (inputs to the
nonlinearities). However, it is not a stable learning
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algorithm in practical real-life applications. Thus, a
faster and more stable learning algorithm is desired
and that is indeed the main purpose of this paper.

II. FLUX ESTIMATOR

Induction motor rotor fluxes are selected to
represent the desired and estimated state variable.
The following two independent estimators, in the
stationary [frame, are generally used to derive these
rotor fluxes.

A. Current Model of Rotor Circuit

The rotor flux estimator can be formed if the
stator current and the rotor speed are measured in
real time. It can be represented as follows.

F = L1+ J L L—’"
daqr _em B @, dgr _em r I (1)
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B. Voltage Model of Stator Circuit
The voltage model utilizes the stator voltages and

currents, but not the rotor velocity. It is commonly
used to implement direct field orientation without
speed sensors for low cost drive applications. The
rotor fluxes in the stationary d-q reference frame
can be obtained,
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m. THE NEWLY PROPOSED SPEED
SENSORLESS CONTROL ALGORITHM

A. Learning algorithm via the Back-Propagation

The back-propagation algorithm  can be
summarized as follows[2].
w, ) =w, 1)+ aw " (1) 3)
where,

Awﬂk'”‘ (()=ns "o, " + O:Awﬂk_l"c (t-1)

7 i

S, =(t/ ~9, )f'(i/k) for the hidden layer

=f'(if');5kw,g

The back-propagation training algorithm is an
iterative gradient algorithm designed to minimize the
mean square error between the actual output of a
feed-forward net and the desired output.

for the output layer

B. Learning algorithm via the Extended Kalman
Filter
The multi-layered neural network is expressed by
the following models with non-linear observation
equations:

(z+1) W, (0)+ () ®
i +1)=Hw (1 + 1))+ 0(t+1)
=0, (t+1)+0(t+1) &)

where {z(t), v(t)} are mutually independent,
zero-mean noise with covariance matrix QandR
regarded as a modeling error. Note that they can be
considered pseudo-noises for tuning the gain of the
extended Kalman filter. The application of the EKF
to (4) and (5) gives the following real-time learning
algorithms
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The filtered estimates of W,

at _ k=M-1K .2
t+1 are obtained by the

following extended Kalman filter:

B (1) =
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C. Learning algorithm via the Recursive Least Square

We have reviewed how the back-propagation
algorithm essentially implements gradient descent in
sum-squared error. It should be noted, however,
that the learning rate is constant, so we may have
to consume more time fo obtain a sufficiently
convergent results, even though we can take into
account a momentum term. Our main theoretical
contribution here is to show that there is an
efficient way of computing a time-varying learning
rate. Our learning strategy is based on regarding
the learning of a network as an estimation (or
identification) problem of constant parameters. The
output layer of the multi-layered neural network is
expressed by the following models with nonlinear
observation equations :

3,+1)= A, (+1))=0," (r+1) (11)

The recursive least squares method partitions the
layers of an NN into a linear set of input-output
equations and applies the common RLS algorithm to
update the weights in each layer.The application of
the RLS algorithm for a weight matrix update gives
the following real-time learning algorithms

e+ )=, 0+ K, (0, ()0, 0] (12)
K.()- P e+112)0 (1)

o™, (0P, (t+11 00, 0)] (13)

P],-(t-!-1|t+1)=fl'll_[—Kﬂ(t)d)rﬂ(t)lpj,(t+l|t) (14)

where A(Q< A £1) is the forgetting factor

K, ® is the gain matri)g,
Plr+1]1+1) is covariance matrix,
@ ],(t) is the input to the layer,’
y, ® is the desired output.

D. Speed sensorless control strategy

Two independent cbservers are used to estimate
the rotor flux vectors: one based on (1) and the
other based on (2). Since (1) does not involve the
speed o this observer generates the desired value
of rotor flux, and (2) which does involve. ‘@
may be regarded as a neuralmodel withadjustable
weights. The error between the desired rotor flux

given by (1) and the rotor flux
provided by the neural model (2) is

used to adjust the weights, in other words
the rotor speed @ .

The rotor speed can be derived using the NN.
The overall block diagram of speed sensorless
control is shown in Fig. 1

}-J dgr _vm

l’ dgr _cm

Neural Network Emulator

X0 — st
P )
AR
- Back
@, — Propagation
Algorithm

(a) Back-Propagation algorithrm

Neural Netwoark Emulator

O

EKF based
NN Algorithm

'Ia)

(b} Extended Kalman Filter afgorithm

Novel RLS
based NN
Algarithm

{c) Recursive Least Square algorithm
Fig 1

The discrete state equationn model of (2) can be
rewritten as follows

k)= (K)o (k) (15)

where, o7 (k)= lﬂ:"qr_cm %) Paenl®) 7u(0)]

=[x (k) x,(8) Xx:(k)]
éw)=N-y¢, 1, &1, L,Ji T.T

=[ﬁ’n(k) “"’xz(k) ﬁ’u(k)]r

The new weigh Wy, (k)
is therefore given by below
Wk +1) =, (k k)lyj -y (k)l where,
(16)

( )=y (k)

The estimated rotor speed o (k)

where applied by RLS based on NN is computed as
follows
&, (k+1)=

&,(6)+ K, (), (|)-0"®EEYT. (a7
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where A can be used to improve the characteristics
of the transient response as follows!:

Ak) = A Ak —1)+(1-4,)
Ay =0.98 P,(0]0)=5007

IV. SIMULATION RESULTS

A 22kW 4-pole IM is used for the simulation and
experiment simultaneously. The proposed sensorless
cortrol of IM is shown in Fig. 2. The nominal
parameters used for the simulations are given Table
1 as follows :

Table.l Induction Motor Parameters,.

Rated Power 22kW L, 43, 75mH
Pated Speed 2000rpm L, 44 . 09mH
Rated Torque 120Nm L, 42 . 1mH
R, 0.115 T [0.1618 kgm?
R, 00821 p 4

CUFrRAT CONO T}

Fig. 2 The block diagram of the overall control

algorithm.
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Fig. 3 The characteristics of speed step response
(+500[rpm]-500{rprnl, 0.5p.u. load).
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Fig. 4 The comparison of the mean squared error
versus the iteration number for each NN algorithm.

The step response of the speed sensorless
algorithm is shown in Fig. 3 when the speed
reference is changed from Olrpm] to 500[rpm]. As
shown in fig. 3, we can know that the speed error
of RLS-based NN algorithm is limited by 0.05%6 of
the rating speed. Also, The proposed learning
algorithm usually converges in a few iterations and
the error is comparable to that of the well-known
back-propagation algorithm. Fig. 4 shows the
comparison of .the mean squared error. versus the
number of iteration for each method. Fig. 5 shows
the system sensitivity to parameter variation. Fig. 6
shows the comparison of the mean squared error
versus the noise sensitivity.
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Fig. 5 The comparison of the speed variation versus
the rotor resistance variation for each NN algorithm.
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Fig. 6 The comparison of the mean squared error
" versus the noise deviation for each NN algorithm.

- 529 -



V. EXPERIMENTAL RESULTS

For the high performance IM drives, the overall
IM drive system in Fig. 7 is implemented with a
TMS320C31 DSP control board and a PWM IGBT

inverter,

L —-ﬁ] ——4%] «—1&1{] o m -
f 1 [ lrj@_

A7) lA' 5 |a' L=l | o
l Cimte Brhrar Clrcult oy

170 Gantrol )

Catlng Gararaior
EFLDEPM512¢8

CPI - TMEDNC N
ERAM ; 256K X 3204
ROM . 22k X 320

Fig. 7 The overall IM drive system.

For actual load emulation, the DC generator is
coupled to the IM. Actual rotor angle and machine
speed are measured from an incremental encoder
with  4096[ppr] resolution for monitoring. The
sampling time of current controller loop is 250(s]
and that of the outer voltage regulating loop and
speed loop is 2.5[ms]. The control algorithm
including  the proposed scheme was fully
implemented with the software.

125 TSN Bl Sl

LT R

(a)Back-Propagation algorithm

=
‘P
4

Ttk TR Il B

+ O s(apdne

(b) Extended Kalman Filter algorithm

& e L.
% .
g AT LI
B A 1
% AN ) L I

oO.Apmyai
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Fig. 8 The experimental waveforms of step response
(Olrpm]->+500[rpm], TL=0.5[p.ul).

Experiments are conducted to evaluate the
performance of the new speed sensor elimination
algorithm based on the NN. The step response of
the speed sensorless algorithm is shown fig. 8
when the speed reference is changed with load

torque.
It shows that the estimated speed is tracking the
real one with good accuracy. The proposed

algorithm works well in spite of the load torque
variation and parameter variation.

VI. CONCLUSION

We  have studied learning algorithm  for
multi~layvered feed-forward type neural networks.
Neural Network algorithm can be divided into three
categories for speed sensorless control of induction
motor drives,

1) Back Propagation—based NN algorithm
2) Extended Kalman Filter-based NN algorithm
3) Recursive Least Square-based NN algorithm

Table. 2 Comparison results on the speed sensorless

systems.
STE . DB | LS | PS | NS C CT
BP 3 3 3 3 4 2 2
EKFNN | 2 2 2 2 2 3 4
RLSNN | 1 1 2 1 2 2 2
1 : good, 4: bad,
STE : steady state error,
DB : dynamic behavior,
LS : low speed,
PS : parameter sensitivity,
C : complexity,
NS ! noise sensitivity,
CT : computation time.
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