• Title/Summary/Keyword: rectangular beams

Search Result 213, Processing Time 0.025 seconds

Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams

  • Gemi, Lokman;Alsdudi, Mohammed;Aksoylu, Ceyhun;Yazman, Sakir;Ozkilic, Yasin Onuralp;Arslan, Musa Hakan
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.735-757
    • /
    • 2022
  • The behavior of shear deficient under-balanced reinforced concrete beams with rectangular cross-sections, which were externally strengthened with CFRP composite along shear spans, was experimentally investigated under vertical load. One of the specimens represents a reference beam without CFRP strengthening and the other specimens have different width/strip spacing ratios (wf/sf). The optimum strip in terms of wf/sf, which will bring the beam behavior to the ideal level in terms of strength and ductility, was determined according to the regulations. When the wf/sf ratio exceeds 0.55, the behavior of the beam shifted from shear failure to bending failure. However, it has been observed that the wf/sf ratio should be increased up to 0.82 in order for the beam to reach sufficient shear reserve value according to the codes. It is also observed that the direction and weight of the CFRP composite are one of the most critical factors and 240 gr/m2 CFRP strips experienced sudden ruptures in the shear span after the cracking of the concrete. It is considered as a deficiency that the empirical shear capacity formulas given for the beams reinforced with CFRP in the regulations do not take into account both direction and weight of CFRP composites.

Modeling of rock dilation and spalling in an underground opening at depth (대심도 지하공동에 발생하는 암반의 팽창 및 스폴링 현상 모델링)

  • Cho, Nam-Kak;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.31-41
    • /
    • 2010
  • This paper presents both numerical and physical modeling approaches for the dilation and spalling of rock recognized as typical process of rock around an underground opening at depth. For physical approach, laboratory testing of rectangular beams using a synthetic rock was used to investigate the onset of dilation and spalling. The beams are axially compressed and subjected to 4-point bending to provide non-uniform compressive stresses which are similar to the maximum tangential stress distribution around circular openings. Discrete element numerical analyses using commercial code $PFC^{2D}$ (Particle Flow Code) were performed to evaluate the stress path at various locations in the beams. The findings from these approaches suggest that the onset of dilation in laboratory tests appears to be a good indicator for assessing the stress magnitudes required to initiate spalling.

Crack Identification of Euler-Bernoulli Beam Using the Strain Energy Method (에너지 방법을 이용한 Euler-Bernoulli 보의 손상 규명)

  • Huh, Young-Cheol;Kim, Jae-Kwan;Kim, Byung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.396-400
    • /
    • 2006
  • We studied the influences of open cracks in free vibrating beam with rectangular section using a numerical model. The crack was assumed to be single and always open during the free vibration and equivalent bending stiffness of a cracked beam was calculated based on the strain energy balance. By Galerkin's method, the frequencies of cantilever beam could he obtained with respect to various crack depths and locations. Also, the experiments on the cracked beams were carried out to find natural frequencies. The cracks were initiated at five locations and the crack depths were increased by five steps at each location. The experimental results were compared with the numerical results and the comparison results were discussed.

  • PDF

A study on transverse vibration characteristics of a sandwich plate with asymmetrical faces

  • Ahn, Namshik;Lee, Kangsu
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.501-515
    • /
    • 2011
  • Sandwich elements have high flexural rigidity and high strength per density. They also have excellent anti-vibration and anti-noise characteristics. Therefore, they are used for structures of airplanes and high speed ships that must be light, as well as strong. In this paper, the Reissner-Mindlin's plate theory is studied from a Hamilton's principle point of view. This theory is modified to include the influence of shear deformation and rotary inertia, and the equation of motion is derived using energy relationships. The theory is applied to a rectangular sandwich model which has isotropic, asymmetrical faces and an isotropic core. Investigations are conducted for five different plate thicknesses. These plates are identical to the sandwich plates currently used in various structural elements of surface effect ships (SES). The boundary conditions are set to simple supports and fixed supports. The elastic and shear moduli are obtained from the four-point bending tests on the sandwich beams.

An Experimental Study on the Fatigue Strength of Rolling Stock Structures (철도차량 구조물의 피로강도에 관한 실험적 연구)

  • Goo Byeong-choon;Kim Jae-Hoon;Oh Chang-rok;Kim Dae-Jin
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.878-882
    • /
    • 2004
  • We investigated the effect of weld details on fatigue behavior of a material, JIS SM 490 A, with yielding strength of about 350 MPa and tensile strength of about 520 MPa. Tensile tests, instrumented indentation tests and fatigue tests were carried out on double V-grooved butt weld plates such as reinforcement removed, as-welded and weld toe ground. In addition plates with transverse fillet welded web, load carrying cruciform fillet welded plates, non-load-carrying cruciform fillet welded plates, longitudinal butt welded plates and welded rectangular life-size box beams were tested. S-N curves for the above specimens were obtained and analyzed.

  • PDF

A spectrally formulated finite element method for vibration of a tubular structure

  • Horr, A.M.;Schmidt, L.C.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.3
    • /
    • pp.209-226
    • /
    • 1996
  • One of the major divisions in the mathematical modelling of a tubular structure is to include the effect of the transverse shear stress and rotary inertia in vibration of members. During the past three decades, problems of vibration of tubular structures have been considered by some authors, and special attention has been devoted to the Timoshenko theory. There have been considerable efforts, also, to apply the method of spectral analysis to vibration of a structure with rectangular section beams. The purpose of this paper is to compare the results of the spectrally formulated finite element analyses for the Timoshenko theory with those derived from the conventional finite element method for a tubular structure. The spectrally formulated finite element starts at the same starting point as the conventional finite element formulation. However, it works in the frequency domain. Using a computer program, the proposed formulation has been extended to derive the dynamic response of a tubular structure under an impact load.

Characteristics of corrugated polycrystalline 3C-SiC resonators (주름진 다결정 3C-SiC 공진기의 특성)

  • Nhan, Duong The;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.251-251
    • /
    • 2008
  • In this work, appropriate corrugated structure is suggested to increase resonant frequency of resonators. Micro beam resonators based on polycrystalline 3C-SiC films which have a two-side corrugation along the length of beams were simulated by finite element method and compared to a same - size flat rectangular. With the dimension of $36\times12\times0.5{\mu}m^3$, the flat cantilever has resonant frequency of 746 kHz. Meanwhile, with this size only corrugation width of $6{\mu}m$ and depth of $0.4{\mu}m$, the corrugated cantilever reaches the resonant frequency at 1.252 MHz, and is 68% larger than that of flat type.

  • PDF

Preparation and Holographic Recording of Diarylethene-Doped Photochromic Films

  • Kim, Eun-Kyoung;Park, Ji-Young;Cho, Song-Yun;Kim, Nam;Kim, Jung-Hoi
    • ETRI Journal
    • /
    • v.25 no.4
    • /
    • pp.253-257
    • /
    • 2003
  • This study investigated the photochromic properties and characterization of acetyl-substituted diarylethene (DAMBTF6)-doped fluoroacrylates media for holographic storage. For the rewritable holographic recording media, we prepared photochromic polymer films using an acrylate matrix by simple photocuring methods. Switching light sources from a visible (532 nm) to an ultraviolet (365 nm) produced transparent films that changed from pale yellow to red. Holographic recording was performed on the photochromic films by two interfering collimated plane wave beams. Excitation with a visible or ultraviolet light completely erased the records, and the film was rewritable either by 532 nm laser or by 325 nm laser within 2 seconds. Images were recorded onto a pixelated spatial light modulator with rectangular pixel apertures and reconstructed on the photochromic films to show recovery of the original images with high resolution.

  • PDF

Modal Analysis on SPL of the Periodic Structure depend on Unsymmetrical Beam Space (비대칭형 보강재 간격에 따른 주기구조물의 SPL모드 해석)

  • 김택현;김종태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.52-60
    • /
    • 2002
  • The purpose of this research is to study the vibration and acoustic pressure radiation from a thin isotropic flat plate stiffened by a rectangular array of beams, and excited by a time harmonic point force. These constructions on aircraft and ship structures are often subjected to fiequency dependent pressure fluctuations and forces. Forces from the these excitations induce structural vibrations in a wide range of fiequencies, which may cause such things as acoustic fatigue and internal cabin noise in the aircraft. It is thus important that the response characteristics and vibration modes of such periodic structures be horn. From this theoretical model, the sound pressure levels(SPL) in a semi-infinite fluid(water) bounded by the plate with the variation in the locations of an external time harmonic point farce on the plate can be calculated efficiently using three numerical tools such as the Gauss-jordan method the LU decomposition method md the IMSL numerical package.

Numerical comparison of the beam model and 2D linearized elasticity

  • Fabijanic, Eva;Tambaca, Josip
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.621-633
    • /
    • 2009
  • In this paper we compare the solution of the one-dimensional beam model and the numerical solution of the two-dimensional linearized elasticity problem for rectangular domain of the beam-like form. We first derive the beam model starting from the two-dimensional linearized elasticity, the same way it is derived from the three-dimensional linearized elasticity. Then we present the numerical solution of the two-dimensional problem by finite element method. As expected the difference of two approximations becomes smaller as the thickness of the beam tends to zero. We then analyze the applicability of the one-dimensional model and verify the main properties of the beam modeling for thin beams.