DOI QR코드

DOI QR Code

Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams

  • Received : 2021.05.09
  • Accepted : 2022.04.15
  • Published : 2022.06.25

Abstract

The behavior of shear deficient under-balanced reinforced concrete beams with rectangular cross-sections, which were externally strengthened with CFRP composite along shear spans, was experimentally investigated under vertical load. One of the specimens represents a reference beam without CFRP strengthening and the other specimens have different width/strip spacing ratios (wf/sf). The optimum strip in terms of wf/sf, which will bring the beam behavior to the ideal level in terms of strength and ductility, was determined according to the regulations. When the wf/sf ratio exceeds 0.55, the behavior of the beam shifted from shear failure to bending failure. However, it has been observed that the wf/sf ratio should be increased up to 0.82 in order for the beam to reach sufficient shear reserve value according to the codes. It is also observed that the direction and weight of the CFRP composite are one of the most critical factors and 240 gr/m2 CFRP strips experienced sudden ruptures in the shear span after the cracking of the concrete. It is considered as a deficiency that the empirical shear capacity formulas given for the beams reinforced with CFRP in the regulations do not take into account both direction and weight of CFRP composites.

Keywords

Acknowledgement

Authors especially would like to thank Konya Technical University BAP (Project Number: 201004038).

References

  1. ACI-440.2R-17 (2017), Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, American Concrete Institute, Farmington Hills, MI.
  2. 440.2R-08, A. (2008), American Concrete Institute Farmington Hills, Mich.
  3. Ahmed, E. and Sobuz, H.R. (2011), "Experimental study on longterm behaviour of CFRP strengthened RC beams under sustained load", Struct. Eng. Mech., 40(1), 105-120, http://dx.doi.org/10.12989/sem.2011.40.1.105.
  4. Akroush, N., Almahallawi, T., Seif, M. and Sayed-Ahmed, E.Y. (2017), "CFRP shear strengthening of reinforced concrete beams in zones of combined shear and normal stresses", Compos. Struct., 162, 47-53. https://doi.org/10.1016/j.compstruct.2016.11.075.
  5. Aksoylu, C. (2021). "Experimental analysis of shear deficient reinforced concrete beams strengthened by glass fiber strip composites and mechanical stitches", Steel Compos. Struct., 40(2), 267-285. https://doi.org/10.12989/scs.2021.40.2.267.
  6. Aksoylu, C. and Kara, N. (2019), "Guclendirme Teknigi Olarak Yeni Nesil On uretimli Beton Panel Uygulamasinin Arastirilmasi", Selcuk universitesi Muhendislik, Bilim ve Teknoloji Dergisi. 7(2), 346-361. https://doi.org/10.15317/Scitech.2019.204.
  7. Aksoylu, C. and Kara, N. (2020), "Strengthening of RC frames by using high strength diagonal precast panels", J. Build. Eng., 31, 101338. https://doi.org/10.1016/j.jobe.2020.101338.
  8. Aksoylu, C., Ozkilic, Y.O. and Arslan, M.H. (2020a), "Damages on prefabricated concrete dapped-end purlins due to snow loads and a novel reinforcement detail", Eng. Struct., 225, 111225. https://doi.org/10.1016/j.engstruct.2020.111225.
  9. Aksoylu, C., Ozkilic, Y.O., Yazman, S., Gemi, L. and Arslan, M.H. (2021), "Inceltilmis Uclu Onuretimli Asik Kirislerinin Yuk Tasima Kapasitelerinin Deneysel ve Numerik Olarak Irdelenmesi ve Cozum Onerileri", Teknik Dergi. 32(3). https://doi.org/10.18400/tekderg.667066.
  10. Aksoylu, C. and Sezer, R. (2018), "Investigation of precast new diagonal concrete panels in strengthened the infilled reinforced concrete frames", KSCE J. Civil Eng., 22(1), 236-246. https://doi.org/10.1007/s12205-017-1290-6.
  11. Aksoylu, C., Yazman, S., Ozkilic, Y.O., Gemi, L. and Arslan, M.H. (2020b), "Experimental analysis of reinforced concrete shear deficient beams with circular web openings strengthened by CFRP composite", Compos. Struct., 249, 112561. https://doi.org/10.1016/j.compstruct.2020.112561.
  12. Arslan, H.D. and Koken, B. (2016), "Evaluation of the space syntax analysis in post-strengthening hospital buildings", Architect. Res., 6(4), 88-97.
  13. Al-Rousan, R. and Issa, M. (2011), "Fatigue performance of reinforced concrete beams strengthened with CFRP sheets", Construct. Build. Mater., 25(8), 3520-3529. https://doi.org/10.1016/j.conbuildmat.2011.03.045.
  14. Al-Rousan, R.Z. (2017), "Shear behavior of RC beams externally strengthened and anchored with CFRP composites", Struct. Eng. Mech., 63(4), 447-456, http://dx.doi.org/10.12989/sem.2017.63.4.447.
  15. Alsdudi, M., Arslan, M.H., Ozkilic, Y.O., Yazman, S., Aksoylu, C. and Gemi, L. (2020), Determination of Optimum CFRP composite Amount in Strengthening Reinforced Concrete Beams with Inadequate Shear Strength, Faculty of Engineering, University of Porto, Portugal.
  16. Alsdudi, M. (2020), Determination of Optimum FRP Composite Amount in Strengthening Reinforced Concrete Beams with Inadequate Shear Strength, Master Thesis, Konya Technical University, Konya, Turkey
  17. Altin, S., Anil, O., Toptas, T., Kara, M.E. (2011), "Retrofitting of shear damaged RC beams using CFRP strips", Steel Compos. Struct.,11(3), 207-223, http://dx.doi.org/10.12989/scs.2011.11.3.207.
  18. Arslan, M.H., Yazman, S., Hamad, A. A., Aksoylu, C., Ozkilic, Y. O., Gemi, L. (2022). "Shear strengthening of reinforced concrete T-beams with anchored and non-anchored CFRP fabrics", Structures, 39, 527-542 https://doi.org/10.1016/j.istruc.2022.03.046s.
  19. Ary, M.I. and Kang, T.H.K. (2012), "Shear-strengthening of reinforced & prestressed concrete beams using FRP: part Ireview of previous research", Int. J. Concrete Struct. Mater., 6(1), 41-47. https://doi.org/10.1007/s40069-012-0004-1.
  20. Baggio, D., Soudki, K. and Noel, M. (2014), "Strengthening of shear critical RC beams with various FRP systems", Construct. Build. Mater., 66, 634-644. https://doi.org/10.1016/j.conbuildmat.2014.05.097.
  21. Bulut, N., Anil, O. and Belgin, C.M. (2011), "Nonlinear finite element analysis of RC beams strengthened with CFRP strip against shear", Comput. Concrete, 8(6), 717-733, http://dx.doi.org/10.12989/cac.2011.8.6.717.
  22. Barris, C., Torres, L., Vilanova, I., Mias, C. and Llorens, M. (2017), "Experimental study on crack width and crack spacing for Glass-FRP reinforced concrete beams", Eng. Struct., 131, 231-242. https://doi.org/10.1016/j.engstruct.2016.11.007.
  23. Belabed, Y., Kerboua, B. and Tarfaoui, M. (2019), "New optimized numerical solution of interfacial stresses in steel strengthened structures with CFRP", Adv. Civil Eng. Mater., 8(1), 117-133. https://doi.org/10.1520/ACEM20180061.
  24. Belarbi, A., Bae, S.W. and Brancaccio, A. (2012), "Behavior of full-scale RC T-beams strengthened in shear with externally bonded FRP sheets", Construct. Build. Mater., 32, 27-40. https://doi.org/10.1016/j.conbuildmat.2010.11.102.
  25. Boukhezar, M., Samai, M.L., Mesbah, H.A. and Houari, H. (2013), "Flexural behaviour of reinforced low-strength concrete beams strengthened with CFRP plates", Struct. Eng. Mech., 47(6), 819-838. http://dx.doi.org/10.12989/sem.2013.47.6.819.
  26. Boumaaza, M., Bezazi, A., Bouchelaghem, H., Benzennache, N., Amziane, S. and Scarpa, F. (2017), "Behavior of pre-cracked deep beams with composite materials repairs", Struct. Eng. Mech., 63(5), 575-583.
  27. Carolin, A. (2003), Carbon Fibre Reinforced Polymers for Strengthening of Structural Elements, Lulea tekniska universitet, Ph.D. Dissertation, Sweden.
  28. Carolin, A. and Taljsten, B. (2005), "Theoretical Study of Strengthening for Increased Shear Bearing Capacity", J. Compos. Construct., 9(6), 497-506, https://doi.org/10.1061/(ASCE)1090-0268(2005)9:6(497).
  29. Castellano, A., Fraddosio, A., Scacco, J., Milani, G. and Piccioni, M.D. (2019), "Dynamic response of FRCM reinforced masonry arches", In Key Engineering Materials, 817, 285-292. https://doi.org/10.4028/www.scientific.net/KEM.817.285.
  30. Castellano, A., Foti, P., Fraddosio, A., Marzano, S. and Piccioni, M.D. (2014), "Mechanical characterization of CFRP composites by ultrasonic immersion tests: Experimental and numerical approaches", Compos. Part B: Eng., 66, 299-310. https://doi.org/10.1016/j.compositesb.2014.04.024.
  31. Castellano, A., Fraddosio, A. and Piccioni, M.D. (2018), "Quantitative analysis of QSI and LVI damage in GFRP unidirectional composite laminates by a new ultrasonic approach", Compos. Part B: Eng., 151, 106-117. https://doi.org/10.1016/j.compositesb.2018.06.003.
  32. CSA-S806-02 (2002), Canadian Standard Association, CSA, Rexdale BD, Toronto.
  33. D'Antino, T., Focacci, F., Sneed, L.H. and Carloni, C. (2020). "Relationship between the effective strain of PBO FRCMstrengthened RC beams and the debonding strain of direct shear tests", Eng. Struct., 216, 110631. https://doi.org/10.1016/j.engstruct.2020.110631.
  34. D'Antino, T. and Triantafillou, T.C. (2016), "Accuracy of designoriented formulations for evaluating the flexural and shear capacities of FRP-strengthened RC beams", Struct. Concrete. 17(3), 425-442. https://doi.org/10.1002/suco.201500066.
  35. Dias, S.J.E., Silva, J.R.M. and Barros, J.A.O. (2021), "Flexural and shear strengthening of reinforced concrete beams with a hybrid CFRP solution", Compos. Struct., 256, 113004. https://doi.org/10.1016/j.compstruct.2020.113004.
  36. Duran, B., Tunaboyu, O., Kaplan, O. and Avsar, O.J. (2018), "Effectiveness of seismic repairing stages with CFRPs on the seismic performance of damaged RC frames", Struct. Eng. Mech., 67(3), 233-244. http://dx.doi.org/10.12989/sem.2018.67.3.233.
  37. El-Shihy, A., Fawzy, H., Mustafa, S., El-Zohairy, A.J.S. and Structures, C. (2010), "Experimental and numerical analysis of composite beams strengthened by CFRP laminates in hogging moment region", Steel Compos. Struct., 10(3), 281-295, http://dx.doi.org/10.12989/scs.2010.10.3.281.
  38. FIB (2010), Externally Bonded FRP Reinforcement for RC Structures, Technical Report., Int. Federation for Structural Concrete.
  39. Gemi, L. (2018), "Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study", Compos. Part B: Eng., 153 217-232. https://doi.org/10.1016/j.compositesb.2018.07.056.
  40. Gemi, L., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan, M.H. (2019), "Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite", Compos. Struct., 229, 111399. https://doi.org/10.1016/j.compstruct.2019.111399.
  41. Gemi, L., Koklu, U., Yazman, S. and Morkavuk, S. (2020a), "The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-1 mechanical characterization and drilling tests", Compos. Part B: Eng., 186, 107787. https://doi.org/10.1016/j.compositesb.2020.107787.
  42. Gemi, L. and Koroglu, M.A. (2018), "Cekme bolgesi lifli beton olan cam fiber takviyeli polimer (GFRP) ve celik donatili etriyesiz kirislerin egilme etkisi altindaki davranii ve hasar analizi", Selcuk universitesi Muhendislik, Bilim ve Teknoloji Dergisi. 6(4), 654-667.
  43. Gemi, L., Koroglu, M.A. and Ashour, A. (2018), "Experimental study on compressive behavior and failure analysis of composite concrete confined by glass/epoxy ±55° filament wound pipes", Compos. Struct., 187, 157-168. https://doi.org/10.1016/j.compstruct.2017.12.049.
  44. Gemi, L., Madenci, E. and Ozkilic, Y.O. (2020), "Celik, Cam FRP ve Hibrit Donatili Betonarme Kirislerin Egilme Performansinin Incelenmesi", Duzce universitesi Bilim ve Teknoloji Dergisi. 8(2), 1470-1483. https://doi.org/10.29130/dubited.629354.
  45. Gemi, L., Madenci, E. and Ozkilic, Y.O. (2021), " Experimental, analytical and numerical investigation of pultruded GFRP composite beams infilled with hybrid FRP reinforced concrete", Eng. Struct., 244, 112790. https://doi.org/10.1016/j.engstruct.2021.112790.
  46. Gemi, L., Morkavuk, S., Koklu, U. and Yazman, S. (2020b), "The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-2 damage analysis and surface quality", Compos. Struct., 235, 111737. https://doi.org/10.1016/j.compstruct.2019.111737.
  47. Geng, D., Liu, Y., Shao, Z., Lu, Z., Cai, J., Li, X., Jiang, X. and Zhang, D. (2019), "Delamination formation, evaluation and suppression during drilling of composite laminates: A review", Compos. Struct., 216 168-186. https://doi.org/10.1016/j.compstruct.2019.02.099.
  48. Geng, D., Liu, Y., Shao, Z., Zhang, M., Jiang, X. and Zhang, D. (2020), "Delamination formation and suppression during rotary ultrasonic elliptical machining of CFRP", Compos. Part B: Eng., 183, 107698. https://doi.org/10.1016/j.compositesb.2019.107698.
  49. Ghazi J. Al-Sulaimani, A.S.I.A.B.M.H.B. and Bader, N.G. (1994), "Shear repair for reinforced concrete by fiberglass plate bonding", ACI Struct. J., 91(4).
  50. Gonzalez-Libreros, J.H., Sneed, L.H., D'Antino, T. and Pellegrino, C. (2017), "Behavior of RC beams strengthened in shear with FRP and FRCM composites", Eng. Struct., 150, 830-842. https://doi.org/10.1016/j.engstruct.2017.07.084.
  51. Grace, N.F., Sayed, G., Soliman, A. and Saleh, K.J.A.S.J.-A.C.I. (1999), "Strengthening reinforced concrete beams using fiber reinforced polymer (FRP) laminates", 96(5), 865-874.
  52. Hamad, A.A., Arslan, M.H., Yazman, S., Ozkilic, Y.O., Aksoylu, C. and Gemi, L. (1-4 September 2020), Reinforced Concrete TBeams Strengthened by CFRP Composite and Proposed Solutions for the Practice, Faculty of Engineering, University of Porto, Portugal
  53. Hawileh, R.A., Nawaz, W., Abdalla, J.A. and Saqan, E.I. (2015), "Effect of flexural CFRP sheets on shear resistance of reinforced concrete beams", Compos. Struct., 122, 468-476. https://doi.org/10.1016/j.compstruct.2014.12.010.
  54. Hawileh, R.A., Abdalla, J.A., Tanarslan, M.H., Naser, M.Z. (2011), "Modeling of nonlinear cyclic response of shear-deficient RC T-beams strengthened with side bonded CFRP fabric strips", Compos. Conc., 8(3), 193-206, http://dx.doi.org/10.12989/cac.2011.8.2.193.
  55. Huo, J., Li, Z., Zhao, L., Liu, J. and Xiao, Y. (2018), "Dynamic behavior of carbon fiber-reinforced polymer-strengthened reinforced concrete beams without stirrups under impact loading", ACI Struct. J., 115(3).
  56. Ivorra, S., Camassa, D., Bru, D., Gisbert Sanchez, J.I., Castellano, A., Fraddosio, A. and Piccioni, M.D. (2020). "Assessment of the TRM reinforcement of windowed masonry walls through OMA identification", XI International Conference on Structural Dynamics, Athens, Greece.
  57. Jin, L., Xia, H., Jiang, X.A. and Du, X. (2020), "Size effect on shear failure of CFRP-strengthened concrete beams without web reinforcement: Meso-scale simulation and formulation", Compos. Struct., 236 111895. https://doi.org/10.1016/j.compstruct.2020.111895.
  58. Kaltakci M.Y., Arslan M.H., Yilmaz U.S., Arslan H.D. (2008), "A new approach on the strengthening of primary school buildings in Turkey: An application of external shear wall", Build. Environ., 43(6), 983-990. https://doi.org/10.1016/j.buildenv.2007.02.009.
  59. Kang, T.H.K. and Ary, M.I. (2012), "Shear-strengthening of reinforced & prestressed concrete beams using FRP: Part IIExperimental investigation", Int. J. Concrete Struct. Mater., 6(1), 49-57. https://doi.org/10.1007/s40069-012-0005-0.
  60. Kantar, E. and Anil, O.J. (2012), "Low velocity impact behavior of concrete beam strengthened with CFRP strip", Steel Compos. Struct., 12(3), 207-230, http://dx.doi.org/10.12989/scs.2012.12.3.207.
  61. Karzad, A.S., Al Toubat, S., Maalej, M. and Estephane, P. (2017). "Repair of reinforced concrete beams using carbon fiber reinforced polymer", MATEC Web of Conferences. https://doi.org/10.1051/matecconf/201712001008.
  62. Khalil, A.H. and Etman, E. (2003), Effect of Corner Radius on the Behavior of Strengthened RC Columns with Different Heights, Alexandria, Egypt.
  63. Lee, H.K., Cheong, S.H., Ha, S.K. and Lee, C.G. (2011), "Behavior and performance of RC T-section deep beams externally strengthened in shear with CFRP sheets", Compos. Struct., 93(2), 911-922. https://doi.org/10.1016/j.compstruct.2010.07.002.
  64. Khan, U., Al-Osta, M.A., Ibrahim, A. (2017), "Modeling shear behavior of reinforced concrete beams strengthened with externally bonded CFRP sheets", Struct. Eng. Mech., 61(1), 125-142, http://dx.doi.org/10.12989/sem.2017.61.1.125.
  65. Kim, N., Kim, Y.H., Kim, H.S. (2015), "Experimental and analytical investigations for behaviors of RC beams strengthened with tapered CFRPs", Struct. Eng. Mech.,53(6), 1067-1081, http://dx.doi.org/10.12989/sem.2015.53.6.1067.
  66. Lee, H.Y., Jung, W.T. and Chung, W. (2017), "Flexural strengthening of reinforced concrete beams with pre-stressed near surface mounted CFRP systems", Compos. Struct., 163 1-12. https://doi.org/10.1016/j.compstruct.2016.12.044.
  67. Lignola, G., Prota, A., Manfredi, G. and Cosenza, E. (2006). "Flexural Behaviour of RC Hollow Columns Confined with CFRP", Proceedings of 2nd fib Congress, Naples, Italy, paper ID.
  68. Luo, Z., Sinaei, H., Ibrahim, Z., Shariati, M., Jumaat, Z., Wakil, K., Pham, B.T., Mohamad, E.T., Khorami, M. (2019), "Computational and experimental analysis of beam to column joints reinforced with CFRP plates", Steel Compos. Struct., 30(3), 271-280, http://dx.doi.org/10.12989/scs.2019.30.3.271.
  69. Madenci, E. and Ozkilic, Y.O. (2021), " Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157.
  70. Madenci, E., Onuralp Ozkilic, Y. and Gemi, L. (2020a), "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. https://doi.org/10.1016/j.compstruct.2020.112806.
  71. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020b), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.
  72. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020c), "Theoretical Investigation on Static Analysis of Pultruded GFRP Composite Beams", Akademik Platform Muhendislik ve Fen Bilimleri Dergisi. 8(3), 483-490. https://doi.org/10.21541/apjes.734770.
  73. Mofidi, A. and Chaallal, O. (2014), "Tests and design provisions for reinforced-concrete beams strengthened in shear using FRP sheets and strips", Int. J. Concrete Struct. Mater., 8(2), 117-128. https://doi.org/10.1007/s40069-013-0060-1.
  74. Moradi, E., Naderpour, H. and Kheyroddin, A. (2020), "An experimental approach for shear strengthening of RC beams using a proposed technique by embedded through-section FRP sheets", Compos. Struct., 238, 111988. https://doi.org/10.1016/j.compstruct.2020.111988.
  75. Morkavuk, S., Koklu, U., Bagci, M. and Gemi, L. (2018), "Cryogenic machining of carbon fiber reinforced plastic (CFRP) composites and the effects of cryogenic treatment on tensile properties: A comparative study", Compos. Part B: Eng., 147, 1-11. https://doi.org/10.1016/j.compositesb.2018.04.024.
  76. Oruc, R. (2019), Kesme kapasitesi yetersiz betonarme kirislerin karbon lifli polimerler ile guclendirilmesinin statik ve dinamik olarak incelenmesi, Aksaray universitesi Fen Bilimleri Enstitusu, Master Thesis.
  77. Osman, B.H., Wu, E., Ji, B. and Abdulhameed, S.S. (2017), "Repair of pre-cracked reinforced concrete (RC) Beams with openings strengthened using FRP sheets under sustained load", Int. J. Concrete Struct. Mater., 11(1), 171-183. https://10.1007/s40069-016-0182-3.
  78. Ozkilic, Y.O., Aksoylu, C. and Arslan, M.H. (2021a), "Experimental and numerical investigations of steel fiber reinforced concrete dapped-end purlins", J. Build. Eng., 36, 102119. https://doi.org/10.1016/j.jobe.2020.102119.
  79. Ozkilic, Y.O., Madenci, E. and Gemi, L. (2020), "Tensile and compressive behaviors of the pultruded GFRP lamina", Turkish J. Eng. (TUJE). 4(4), 169-175. https://doi.org/10.31127/tuje.631481.
  80. Ozkilic, Y.O., Yazman, S., Aksoylu, C., Arslan, M.H. and Gemi, L. (2021b), "Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening", Construct. Build. Mater., 275 122173. https://doi.org/10.1016/j.conbuildmat.2020.122173.
  81. Ozkilic, Y.O., Aksoylu, C. and Arslan, M.H. (2021c). "Numerical evaluation of effects of shear span, stirrup spacing and angle of stirrup on reinforced concrete beam behaviour", Struct. Eng. Mech., 79(3), 309-326. https://doi.org/10.12989/sem.2021.79.3.309.
  82. Panda, K., Bhattacharyya, S. and Barai, S. (2012), "Shear behaviour of RC T-beams strengthened with U-wrapped GFRP sheet", Steel Compos. Struct., 12(2), 149-166. https://doi.org/10.12989/scs.2012.12.2.149.
  83. Panjehpour, M., Abang Ali, A.A. and Aznieta, F.N. (2014), "Energy absorption of reinforced concrete deep beams strengthened with CFRP sheet", Steel Compos. Struct., 16(5), 481-489, http://dx.doi.org/10.12989/scs.2014.16.5.481.
  84. Raoof, S.M. and Bournas, D.A. (2017), "TRM versus FRP in flexural strengthening of RC beams: Behaviour at high temperatures", Construct. Build. Mater., 154, 424-437. https://doi.org/10.1016/j.conbuildmat.2017.07.195.
  85. Saribiyik, A., Abodan, B. and Balci, M.T. (2020), "Experimental study on shear strengthening of RC beams with basalt FRP strips using different wrapping methods", Eng. Sci. Technol. Int. J., https://doi.org/10.1016/j.jestch.2020.06.003.
  86. Saribiyik, A. and Caglar, N. (2016), "Flexural strengthening of RC beams with low-strength concrete using GFRP and CFRP", Struct. Eng. Mech., 58(5), 825-845, http://dx.doi.org/10.12989/sem.2016.58.5.825.
  87. Sassi, S., Tarfaoui, M., Nachtane, M. and Ben Yahia, H. (2019), "Strain rate effects on the dynamic compressive response and the failure behavior of polyester matrix", Compos. Part B: Eng., 174, 107040. https://doi.org/10.1016/j.compositesb.2019.107040.
  88. Shalaby, H.A., Hassan, M.M. and Safar, S.S. (2019), "Parametric study of shear strength of CFRP strengthened end-web panels", Steel Compos. Struct., 31(2), 159-172. http://dx.doi.org/10.12989/scs.2019.31.2.159.
  89. Siddika, A., Saha, K., Mahmud, M.S., Roy, S.C., Mamun, M.A.A. and Alyousef, R. (2019), "Performance and failure analysis of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete (RC) beams", SN Appl. Sci., 1(12), 1617. https://doi.org/10.1007/s42452-019-1675-x.
  90. Sobuz, H.R. and Ahmed, E. (2011). "Flexural performance of RC beams strengthened with different reinforcement ratios of CFRP laminates", Key Eng. Mater., https://doi.org/10.4028/www.scientific.net/KEM.471-472.79.
  91. Spinella, N. (2019), "Modeling of shear behavior of reinforced concrete beams strengthened with FRP", Compos. Struct., 215, 351-364. https://doi.org/10.1016/j.compstruct.2019.02.073.
  92. TBEC (2019), Turkish Building Earthquake Code Government of Republic of Ankara, Turkey.
  93. Tong, Z., Song, X. and Huang, Q. (2018), "Deflection calculation method on GFRP-concrete-steel composite beam", Steel Compos. Struct., 26(5), 595-606. http://dx.doi.org/10.12989/scs.2018.26.5.595.
  94. Tunaboyu, O., Avsar, O. (2017), "Seismic repair of captive-column damage with CFRPs in substandard RC frames", Struct. Eng. Mech., 61(1), 1-13, http://dx.doi.org/10.12989/sem.2017.61.1.001.
  95. Tzoura, E. and Triantafillou, T.C. (2016), "Shear strengthening of reinforced concrete T-beams under cyclic loading with TRM or FRP jackets", Mater. Struct., 49(1), 17-28. https://doi.org/10.1617/s11527-014-0470-9.
  96. Yu F, Guo S, Wang S, Fang Y. (2019), "Experimental study on high pre-cracked RC beams shear-strengthened with CFRP strips", Compos. Struct., 225, 111163. https://doi.org/10.1016/j.compstruct.2019.111163.
  97. Uslu, E., Gavgali, M., Erdal, M.O., Yazman, S. and Gemi, L. (2021), "Determination of mechanical properties of polymer matrix composites reinforced with electrospinning N66, PAN, PVA and PVC nanofibers: A comparative study", Mater. Today Commun., 26, 101939. https://doi.org/10.1016/j.mtcomm.2020.101939.
  98. Wan, S.C., Huang, Q. and Guan, J. (2019), "Strengthening of steel-concrete composite beams with prestressed CFRP plates using an innovative anchorage system", Steel Compos. Struct., 32(1), 21-35. http://dx.doi.org/10.12989/scs.2019.32.1.021.
  99. Xie, Q., Sinaei, H., Shariati, M., Khorami, M., Mohamad, E.T., Bui, D.T. (2019), "An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections", Steel Compos. Struct., 30(5), 433-441, http://dx.doi.org/10.12989/scs.2019.30.5.433.
  100. Yurdakul, O. and Avsar, O. (2015), "Structural repairing of damaged reinforced concrete beam-column assemblies with CFRPs", Struct. Eng. Mech., 54(3), 521-543, http://dx.doi.org/10.12989/sem.2015.54.3.521.
  101. Zhang, D., Wang, Q. and Dong, J. (2016), "Simulation study on CFRP strengthened reinforced concrete beam under four-point bending", Comput. Concrete, 17(3), 407-421, http://dx.doi.org/10.12989/cac.2016.17.3.407.
  102. Zhou, C., Ren, D. and Cheng, X. (2017), "Shear-strengthening of RC continuous T-beams with spliced CFRP U-strips around bars against flange top", Struct. Eng. Mech., 64(1), 135-143, http://dx.doi.org/10.12989/sem.2017.64.1.135.