• Title/Summary/Keyword: recovery cost

Search Result 608, Processing Time 0.036 seconds

Development of a Novel Process to produce Biodiesel and its use as fuel in CI Engine performance study

  • Mishra, Prasheet;Lakshmi, D.V.N.;Sahu, D.K.;Das, Ratnakar
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.154-161
    • /
    • 2015
  • A novel process has successfully been developed by overcoming major difficulties through the elimination of number of process steps involved in the Classical Transesterification reaction during the preparation of Fatty Acid Methyl/Ethyl Ester (FAME.FAEE) called biodiesel. The Classical process with cost intensive process steps such as the utilization of excess alcohol, needing downstream distillation for the recovery and reutilization of excess alcohol/cosolvent, unrecoverable homogenous catalyst which consumes vast quantity of fresh distilled water during the purification of the product and downstream waste water treatment before its safe disposal to the surface water body. The Novel Process FAME/FAEE is produced from any vegetable oil irrespective of edible or inedible variety using sonication energy. The novelty of the finding is the use of only theoretical quantity of alcohol along with a co-solvent and reduced quantity of homogeneous catalyst. Under this condition neither the homogeneous catalyst goes to the FAME layer nor is the distillation needed. The same ester also has been prepared in high pressure high temperature reactor without using catalyst at sub critical temperature. The quality of prepared biodiesel without involving any purification step meets the ASTM standards. Blended Biodiesel with Common Diesel Fuel (CDF) and FAME is prepared, characterized and used as fuel in the Kirloskar make CI Engines. The evaluation of the engine performance result of pure CDF, B05 biodiesel, B10 biodiesel of all types of biodiesel prepared by using the feedstock of Soybean (Glycine max) and Karanja (Pongamia pinnate) oil along with their mixed oil provides useful information such as brake power, brake thermal efficiency, brake specific fuel consumption, etc, and established it as ideal fuel for unmodified CI engine.

An Experimental Study of Seismic Retrofit on the Viaduct Bridge of Rail Transit (철도 고가교 기둥의 내진성능에 관한 실험적 연구)

  • Kim, Jinho;Shin, Hongyoung;Park, Yeonjun;Hur, Jinho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.616-622
    • /
    • 2012
  • Earthquake damage of viaduct bridge of railroad may give rise to social loss due to transport restrictions greater than cost of structural recovery. Therefore, viaduct bridge of railroad should have ensure adequate seismic performance. But, results of seismic performance evaluation, many of seismic retrofit was required. In this study, five scale models of columns were made and four of them were reinforced by HT-A(HyperTex & perforate Aluminum) which is improved than existing method. Testing the columns by constant axial load and cyclic lateral displacements, seismic performance of columns has been verified from the result of evaluating the stiffness, ductility and energy dissipation capacity.

A Study of Complex Distillation Arrangements Using Dividing Wall Columns for Improved Depropanizing, Debutanizing and Deisobutanizing Fractionation of NGL (천연가스액 중 프로판, 부탄, 이소-부탄의 개선된 분리회수를 위한 분리벽형 증류탑을 이용한 복합 증류배열에 관한 연구)

  • Nguyen, Van Duc Long;Jang, Sungkeun;Lee, Moonyong
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.245-249
    • /
    • 2013
  • The depropanizing, debutanizing and deisobutanizing fractionation steps of processing natural gas liquids were improved through studying complex distillation arrangements, including the double dividing wall column arrangement (DDWC), the sequence including a dividing wall column (DWC) and a bottom DWC (BDWC), and the sequence including a DWC and a BDWC with top vapor recompression heat pump. These arrangements offer benefits by decreasing reboiler and condenser power consumption. Reducing the number of columns and their diameters can potentially reduce construction costs. The result also showed that operating cost could be reduced most significantly through novel combinations of internal and external heat integration: bottom dividing wall columns employing a top vapor recompression heat pump.

Design of a 0.18$\mu$m CMOS 10Gbps CDR With a Quarter-Rate Bang-Bang Phase Detector (Quarter-Rate Bang-Bang 위상검출기를 사용한 0.18$\mu$m CMOS 10Gbps CDR 회로 설계)

  • Cha, Chung-Hyeon;Ko, Seung-O;Seo, Hee-Taek;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.118-125
    • /
    • 2009
  • With recent advancement of high-speed, multi-gigabit data transmission capabilities, transmitters usually send data without clock signals for reduction of hardware complexity, power consumption, and cost. Therefore clock and data recovery circuits(CDR) become important to recover the clock and data signals and have been widely studied. This paper presents the design of 10Gbps CDR in 0.18$\mu$m CMOS process. A quarter-rate bang-bang phase detector is designed to reduce the power and circuit complexity, and a 4-stage LC-type VCO is used to improve the jitter characteristics. Simulation results show that the designed CDR consumes 80mW from a 1.8V supply, and exhibits a peak-to-peak jitter of 2.2ps in the recovered clock. The chip layout area excluding pads is 1.26mm$\times$1.05mm.

  • PDF

Seismic behavior of properly designed CBFs equipped with NiTi SMA braces

  • Qiu, Canxing;Zhang, Yichen;Qi, Jian;Li, Han
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.479-491
    • /
    • 2018
  • Shape memory alloys (SMA) exhibit superelasticity which refers to the capability of entirely recovering large deformation upon removal of applied forces and dissipating input energy during the cyclic loading reversals when the environment is above the austenite finish temperature. This property is increasingly favored by the earthquake engineering community, which is currently developing resilient structures with prompt recovery and affordable repair cost after earthquakes. Compared with the other SMAs, NiTi SMAs are widely deemed as the most promising candidate in earthquake engineering. This paper contributes to evaluate the seismic performance of properly designed concentrically braced frames (CBFs) equipped with NiTi SMA braces under earthquake ground motions corresponding to frequently-occurred, design-basis and maximum-considered earthquakes. An ad hoc seismic design approach that was previously developed for structures with idealized SMAs was introduced to size the building members, by explicitly considering the strain hardening characteristics of NiTi SMA particularly. The design procedure was conducted to compliant with a suite of ground motions associated with the hazard level of design-basis earthquake. A total of four six-story CBFs were designed by setting different ductility demands for SMA braces while designating with a same interstory drift target for the structural systems. The analytical results show that all the designed frames successfully met the prescribed seismic performance objectives, including targeted maximum interstory drift, uniform deformation demand over building height, eliminated residual deformation, controlled floor acceleration, and slight damage in the main frame. In addition, this study indicates that the strain hardening behavior does not necessarily impose undesirable impact on the global seismic performance of CBFs with SMA braces.

Anesthetic Effect and Physiological Response in Olive Flounder (Paralichthys olivaceus) to Clove Oil in a Simulated Transport Experiment

  • Gil, Hyun Woo;Ko, Min Gyun;Lee, Tae Ho;Park, In-Seok;Kim, Dong Soo
    • Development and Reproduction
    • /
    • v.20 no.3
    • /
    • pp.255-266
    • /
    • 2016
  • The optimum concentrations of clove oil as an anesthetic for olive flounder (Paralichthys olivaceus) and the stress response of the fish to clove oil anesthesia were determined over a range of water temperatures, and investigated in a simulated transport experiment using analysis of various water and physiological parameters. While the time for induction of anesthesia decreased significantly as both the concentration of clove oil and water temperature increased, the recovery time increased significantly (P<0.05). The plasma cortisol concentration in fish at each temperature increased significantly up to 12 h following exposure (P<0.05), then decreased to 48 h (P<0.05). The DO dissolved oxygen concentrations, pH values, and the fish respiratory frequencies decreased over 6 h following exposure to clove oil in all experimental groups (P<0.05), whereas the $NH_4{^+}$ and $CO_2$ concentrations in all experimental groups increased up to 6 h (P<0.05). The pH values and DO concentrations increased with increasing clove oil concentration (P<0.05) in the 6 h following exposure, and the $CO_2$ and $NH_4{^+}$ concentrations and the respiratory frequencies decreased with increasing clove oil concentration (P<0.05). The results of this experiment suggest that clove oil reduced the metabolic activity of olive flounder, thus reducing $NH_4{^+}$ excretion and $O_2$ consumption. In conclusion, clove oil appears to be a cost-effective and efficient anesthetic that is safe for use and non-toxic to the fish and users. Its use provides the potential for improved transportation of olive flounder.

Osmoprotective Effect of Glycine Betaine on Foreign Protein Production in Hyperosmotic Recombinant Chinese Hamster Ovary Cell Cultures Differs among Cell Lines

  • Ryu, Jun-Su;Kim, Tae-Gyeong;Jeong, Ju-Yeong;Lee, Gyun-Min
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.313-316
    • /
    • 2000
  • When 3 recombinant Chinese hamster ovary (rCHO) cell lines, CHO/dhfr-B-22-4, $CS13-1.00^{\ast}$ and $CSl3-0.02^{\ast}$, were cultivated in hyperosmolar media resulting from NaCl addition, their specific foreign protein productivity increased with medium osmolality. Glycine betaine was found to have a strong osmoprotective effect on all 3 rCHO cell lines. Inclusion of 15 mM glycine betaine in hyperosmolar medim enabled rCHO cell lines to grow at 557-573 mOsm/kg where they could not grow in the absence of glycine betaine. However, effect of glycine betaine inclusion in hyperomolar medium on foreign protein production differed among rCHO cell lines. CHO/dhfr-B22-4 cells retained enhanced specific human thrombopoietin (hTPO) productivity in the presence of glycine betaine, and thereby, the maximum hTPO titer obtained at 573 mOsm/kg was increased by 72% over that obtained in the control culture with physiological osmolality (292 mOsm/kg). On the other hand, enhanced specific antibody productivity of $CSl3-1.00^{\ast}$ and $CSl3-0.02^{\ast}$ at elevated osmolality decreased significantly in the presence of glycine betaine at a cost of the recovery of cell growth. As a result, the maximum antibody titer at 557 mOsm/kg was similar to that obtained in the control culture with physiological osmolality. Taken together, efficacy of the simultanous use of hyperosmotic pressure and glycine betaine as a means to improve foreign protein production was variable among different rCHO cell lines.

  • PDF

A Study on the Thermal Designs of 300 MW-Class IGCC Plant (300 MW급 IGCC 플랜트의 열 설계 연구)

  • 이윤경;서석빈;김종진
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.81-89
    • /
    • 2002
  • IGCC (Integrated Coal Gasification Combined Cycle) is a technology that generates electric power using coal gasification and gasified fuel. Carbon conversion value of IGCC is higher and the influence on the environment is lower than the pulverized coal power plant. Especially, in the nations where the weight of fossil fuel for power generation is remarkably high like in Korea, IGCC stands out as an alternative plan to cope with sudden limitation for the emissions. In this paper, system design study for the commercial IGCC system which the introduction is imminent to Korea was performed. Two cases of entrained gasification process are adapted, one is FHR(full heat recovery) type IGCC system for high efficiency and the other is Quench type IGCC system for low cost. System simulations using common codes like AspenPlus were performed for each system. In the case of Quench system, system option study and sensitivity analysis of the air extraction rate was performed. Thermal performance result for the FHR system is 42.6% (HHV, Net) and for the quench system is 40% (HHV, net) when 75% air is extracted.

Design Checklist for Self-sufficient Zero Energy Solar House(ZeSH) (에너지자립형 태양열 주택의 설계 및 시공 방법 체크리스트 수립 연구)

  • Yoon Jongho;Baek Namchoon;Yu Changkyun;Kim Jongil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.416-421
    • /
    • 2005
  • Most of solar system dissemination has been focused on domestic hot water system of which utilization to a building is relatively simple and safe than solar heating system. Through the survey on a cause of solar house dissemination failure in Korea, we conclude that design integration and systematic approach method for technology application are the most important element for a successful solar house. KIER(Korea Institute of Energy Research) and Hanbat National University have started new project on a development of Zero energy Solar House, called ZeSH which can be sustained just by natural energy without the support of existing fossil fuel. This is the 1st phase research of 10 years long-term ZeSH plan which develops a low-cost and $100\%$ self sufficient ZeSH. The goal of 1st phase ZeSH research is to get a $70\%$ self sufficiency only in thermal loads. Actual demonstration house, named KIER ZeSH I was designed and constructed as a result of 1st phase research work in the end of 2002. Various innovative technologies such as super insulation, high performance window, passive and active solar systems, ventilation heat recovery system are applied and evaluated to the KIER ZeSH I. A lot of computer simulations had been conducted for the optimal design and system integration in every design steps. Considering all the results from detailed hourly computer simulation, it is expected that at least $70\%$ self-sufficiency in thermal loads which is 1st phase target value can be excessively achieved in actual demonstration house. Besides, many valuable findings from the design and analysis to construction could be established such as collaboration method among the participants, practical design and construction techniques for system integration and the others. The purpose of this paper is to introduce the main findings through the development of KIER ZeSH I project. Practical guidelines in every design step for new low- or zero- energy solar house is proposed as result.

  • PDF

Countermeasures for Flood Protection of Power Facility at Substation and Ground (수변전실 및 지상 전력기기 침수방지 대책에 관한 연구)

  • Kim, Gi-Hyun;Choi, Myeong-Il;Bae, Suk-Myong;Lee, Jae-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.78-84
    • /
    • 2008
  • Inundation of substation and ground power equipment broke out every summer season in low-lying downtown and low-lying shore by localized heavy rain, typhoon and tidal wave. In case inundation excluding the exchanging cost of equipment, it occurs a great economic and social loss owing to recovery time and events of electric shock occur by inundation electrical facility. So we researched the installation situation of substation and power equipment and inundation loss at Flood Danger Area. And we analyzed refutation or law relating to the flood protection counterplan of US, England Australia. We present flood protection countermeasures by survey and analyzing the internal standard and his paper will be used to resent a reform proposal of electrical feinted law about flood protection.