• Title/Summary/Keyword: recombinant inbred lines

Search Result 74, Processing Time 0.019 seconds

Development of SSLP Marker Targeted to P34 Null Gene in Soybean (콩 P34 단백질 결핍 유전자를 이용한 SSLP 마커 개발)

  • Yang, Kiwoung;Ko, Jong-Min;Lee, Young-Hoon;Jeon, Myeong Gi;Jung, Chan-Sik;Baek, In-Youl;Kim, Hyun-Tae;Park, Keum-Yong
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.502-506
    • /
    • 2010
  • Soybean seed possesses about 15 allergenic proteins recognized by IgEs from soy-sensitive human. The allergenic impact of soybean proteins limit its extensive usage in a broad range of processed foods. Soybean protein P34 or Gly m Bd 30k of the cysteine protease family is one of the major allergen of the soybean seed. P34-null soybean, PI567476, was identified among soybean (Glycine max & Glycine soja Sieb. and Zucc) of approximately 16,226 accessions from USDA soybean germplasm screened. Also, for P34 gene (Williams 82; whole genome sequence cultivar) and P34 null gene (PI567476) comparative analysis of sequences listed in the NCBI database showed the presence of a SSLP (Simple Sequence Length Polymorphism) of 4 base pair. So, a SSLP marker was designed to reveal the polymorphism of the locus. In this study, a population of 339 $F_2$ recombinant inbred lines generated by cross between Taekwang (Glycine max) and PI567476 was used to select $F_{2:3}$ plant of a P34 null gene. The result separation rate Taekwang type, heterozygous type and PI567476 type were shown in 85: 187: 67 since single gene is concerned in as the separation rate of 1:2:1 in $X^2{_{0.05}}=5.99$, df=2. In future, selected plant will identify protein level, whether P34 null protein is equal to P34 null gene.

QTL Analysis of Germination Rate and Germination Coefficient of Velocity under Low Temperature in Rice (저온에서 벼의 발아율 및 발아속도 관련 양적형질 유전자좌(QTL) 분석)

  • Kim, Jinhee;Mo, Youngjun;Ha, Su-Kyung;Jeung, Ji-Ung;Jeong, Jong-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.1
    • /
    • pp.8-17
    • /
    • 2021
  • As rice originates from tropical regions, low temperature stress during the germination stage in temperate regions leads to serious problems inhibiting germination and seedling establishment. Identifying and characterizing quantitative trait loci (QTLs) for low-temperature germination (LTG) resistance help accelerate the development of rice cultivars with LTG tolerance. In this study, we identified QTLs for LTG tolerance (qLTG5, qLTG9) and germination coefficient of velocity under optimal conditions (OGCV) (qOGCV7, qOGCV9) using 129 recombinant inbred lines (RILs) derived from the cross between a low-temperature sensitive line Milyang23 and a low-temperature tolerant variety Gihobyeo. qLTG9 and qOGCV9 were detected at the same location on chromosome 9. At both LTG QTLs (qLTG5 and qLTG9), the alleles for LTG tolerance were contributed by the japonica variety Gihobyeo. At qOGCV7 and qOGCV9, the alleles for low temperature tolerance were derived from Milyang23 and Gihobyeo, respectively. The RILs with desirable alleles at two or more QTLs, i.e., GroupVII: qLTG5+qLTG9 (qOGCV9) and GroupVIII: qLTG5+qOGCV7+qLTG9 (qOGCV9), showed stable tolerance under low-temperature stress. Our results are expected to contribute to the improvement of tolerance to low-temperature and anaerobic stress in japonica rice, which would lead to the wide adoption of direct-seeding practices.

Disease Reaction of a Japonica Rice, Keumo3, and Detection of a Linked DNA Marker to Leaf Blast Resistance ("금오3호"의 벼 잎도열병 저항성 특성 및 저항성 연관 마커 탐색)

  • Lee, Jong-Hee;Kwak, Do-Yeon;Pakr, Dong-Soo;Roh, Jae-Hwan;Kang, Jong-Rae;Kim, Choon-Song;Jeon, Myeong-Gi;Yeo, Un-Sang;Yi, Gihwan;Shin, Mun-Sik;Oh, Byeong-Geun;Hwang, Hung-Goo
    • Korean Journal of Breeding Science
    • /
    • v.40 no.4
    • /
    • pp.408-413
    • /
    • 2008
  • Rice blast resistance is considered one of the most important traits in rice breeding and the disease, caused by Magnaporthe grisea Barr, has brought significant crop losses annually. Moreover, breakdown of resistance normally occurs in two to five years after cultivar release, thus a more durable resistance is needed for better control of this disease. We developed a new variety, Keumo3, which showed strong resistance to leaf blast. It was tested in 2003 to 2007 at fourteen blast nursery sites covering entire rice-growing regions of South Korea. It showed resistance reactions in 12 regions and moderate in 2 regions without showing susceptible reactions. Durability test by sequential planting method indicated that this variety had better resistance. Results showed that Keumo3 was incompatible against 19 blast isolates with the exception of KI101 by artificial inoculation. To understand the genetic control of blast resistance in rice cultivar Keumo3 and facilitate its utilization, recombinant inbred lines (RIL) consisting of 290 F5 lines derived from Akidagomachi/Keumo3 were analyzed and genotyped with Pizt InDel marker zt56591. The recombination value between the marker allele of zt56591 and bioassay data of blast nursery test was 1.1%. These results indicated that MAS can be applied in selecting breeding populations for blast resistance using zt56591 as DNA marker.

Identification of Leaf Blast Resistance Genes Derived from a Korean Weedy Rice, Ganghwaaengmi 11 (잡초성벼인 강화앵미11 유래 잎도열병 저항성 유전자 탐색)

  • Suh, Jung-Pil;Cho, Young-Chan;Kim, Jeong-Ju;Shin, Young-Seop;Yang, Chang-Ihn;Roh, Jae-Hwan;Kim, Yeon-Gyu
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.390-396
    • /
    • 2010
  • A weedy rice, Ganghwaaengmi 11, shows high level of leaf blast resistance. The chromosomal number and locations of genes conferring the leaf blast resistance were detected by QTL (quantitative trait loci) analysis using SSR markers in the 120 RILs (recombinant inbred lines) derived from the cross between Nagdongbyeo and Ganghwaaengmi 11. Ganghwaaengmi 11 expressed compatibility with 20 of the 45 inoculated blast isolates, in contrast to Nagdongbyeo with 44 compatible isolates. To identify QTLs affecting partial resistance, RILs were assessed in upland blast nursery in three regions and inoculated with selected nine blast isolates. QTLs for resistance to blast isolates were identified on chromosomes 7, 11 and 12. Three QTLs associated with blast resistance in nursery test at three regions were also detected on chromosomes 7, 11 and 12. The QTL commonly detected on chromosome 12 was only increased blast resistance by Ganghwaaengmi 11 allele. This QTL accounted for 60.3~78.6% of the phenotypic variation in the blast nursery test. OSR32 and RM101 markers tightly linked to QTL for blast resistance on chromosome 12 might be useful for marker-assisted selection (MAS) and gene pyramiding to improve the blast resistance of japonica rice.