Browse > Article
http://dx.doi.org/10.7740/kjcs.2021.66.1.008

QTL Analysis of Germination Rate and Germination Coefficient of Velocity under Low Temperature in Rice  

Kim, Jinhee (Crop Breeding Division, National Institute of Crop Science, Rural Development Administration)
Mo, Youngjun (Crop Breeding Division, National Institute of Crop Science, Rural Development Administration)
Ha, Su-Kyung (Crop Breeding Division, National Institute of Crop Science, Rural Development Administration)
Jeung, Ji-Ung (Crop Breeding Division, National Institute of Crop Science, Rural Development Administration)
Jeong, Jong-Min (Crop Breeding Division, National Institute of Crop Science, Rural Development Administration)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.66, no.1, 2021 , pp. 8-17 More about this Journal
Abstract
As rice originates from tropical regions, low temperature stress during the germination stage in temperate regions leads to serious problems inhibiting germination and seedling establishment. Identifying and characterizing quantitative trait loci (QTLs) for low-temperature germination (LTG) resistance help accelerate the development of rice cultivars with LTG tolerance. In this study, we identified QTLs for LTG tolerance (qLTG5, qLTG9) and germination coefficient of velocity under optimal conditions (OGCV) (qOGCV7, qOGCV9) using 129 recombinant inbred lines (RILs) derived from the cross between a low-temperature sensitive line Milyang23 and a low-temperature tolerant variety Gihobyeo. qLTG9 and qOGCV9 were detected at the same location on chromosome 9. At both LTG QTLs (qLTG5 and qLTG9), the alleles for LTG tolerance were contributed by the japonica variety Gihobyeo. At qOGCV7 and qOGCV9, the alleles for low temperature tolerance were derived from Milyang23 and Gihobyeo, respectively. The RILs with desirable alleles at two or more QTLs, i.e., GroupVII: qLTG5+qLTG9 (qOGCV9) and GroupVIII: qLTG5+qOGCV7+qLTG9 (qOGCV9), showed stable tolerance under low-temperature stress. Our results are expected to contribute to the improvement of tolerance to low-temperature and anaerobic stress in japonica rice, which would lead to the wide adoption of direct-seeding practices.
Keywords
abiotic stress; direct seeding; germination coefficient of velocity; low-temperature tolerance; quantitative trait locus; rice;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fujino, K., H. Sekiguchi, Y. Matsuda, K. Sugimoto, K. Ono, and M. Yano. 2008. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc. Natl. Acad. Sci. U. S. A. 105 : 12623-12628.   DOI
2 Han, L. Z., Y. Y. Zhang, Y. L. Qiao, G. L. Cao, S. Y. Zhag, J. H. Kim, and H. J. Koh. 2006. Genetic and QTL Analysis for Low-Temperature Vigor of Germination in Rice. Acta Genet. Sin. 33 : 998-1006.   DOI
3 Hou, M. Y., C. M. Wang, L. Jiang, J. M. Wan, H. Yasui, and A. Yoshimura. 2004. Inheritance and QTL mapping of low temperature germinability in rice (Oryza sativa L.). Acta Genet Sin. 31 : 701-706.
4 Jeong, J. M., J. H. Kim, Y. J. Mo, S. K. Ha, W. J. Kim, B. K. Kim, and J. U. Jeung. 2019. Effect of Oxygen and Temperature Levels on the Seedling Characteristics of Korean and Anaerobic Germination-tolerant Rice under Flooding Conditions. Korean J. Crop Sci. 64 : 287-298.
5 Ji, H. S., H. B. Kim, G. S. Lee, U. H. Yoon, T. H. Kim, Y. J. Seol, D. W. Yun, H. J. Koh, and M. Y. Eun. 2012. Molecular Genetic and Physical Map Using PCR-based DNA Markers with the Recombinant Inbred Population Derived from Milyang23 / Gihobyeo Cross. Kor. J. Breeed. Sci 44 : 273-281.
6 Jiang, L., H. MingYu, W. ChunMing, and W. JianMin. 2004. Quantitative trait loci and epistatic analysis of seed anoxia germinability in rice (Oryza sativa). Rice Sci. 11 : 238-244.
7 Jiang, L., S. Liu, M. Hou, J. Tang, L. Chen, H. Zhai, and J. Wan. 2006. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). F. Crop. Res. 98 : 68-75.   DOI
8 Jiang, N., S. Shi, H. Shi, H. Khanzada, G. M. Wassan, C. Zhu, X. Peng, Q. Yu, X. Chen, X. He, J. Fu, L. Hu, J. Xu, L. Ouyang, X. Sun, D. Zhou, H. He, and J. Bian. 2017. Mapping qtl for seed germinability under low temperature using a new high-density genetic map of rice. Front. Plant Sci. 8 : 1-9.
9 Kim, J. H., Y. J. Mo, S.-K. Ha, W.-J. Kim, B.-K. Kim, J.-U. Jeung, and J.-M. Jeong. 2019. QTL Analysis for Tolerance to Anaerobic Germination in Japonica Rice (Oryza sativa L.). Korean J. Breed. Sci. 51 : 415-423.   DOI
10 Jiang, S., C. Yang, Q. Xu, L. Wang, X. Yang, X. Song, J. Wang, X. Zhang, B. Li, H. Li, Z. Li, and W. Li. 2020. Genetic dissection of germinability under low temperature by building a resequencing linkage map in japonica rice. Int. J. Mol. Sci. 21 : 1284.   DOI
11 Ko, J. C., M. K. Back, W. J. Kim, J. Y. Shon, K. Y. Ha, H. -J. Kang, M. S. Shin, and J. K. Ko. 2011. Analysis of Low Temperature Germination Ratio in Rice Cultivars for Breeding of Direct Seeding Variety. Korean J. Intl. Agri. 23 : 89-94.
12 Lou, Q., L. Chen, Z. Sun, Y. Xing, J. Li, X. Xu, H. Mei, and L. Luo. 2007. A major QTL associated with cold tolerance at seedling stage in rice (Oryza sativa L.). Euphytica 158 : 87-94.   DOI
13 Li, L., X. Liu, K. Xie, Y. Wang, F. Liu, Q. Lin, W. Wang, C. Yang, B. Lu, S. Liu, L. Chen, L. Jiang, and J. Wan. 2013. qLTG-9, a stable quantitative trait locus for low-temperature germination in rice (Oryza sativa L.). Theor. Appl. Genet. 126 : 2313-2322.   DOI
14 Lin, J., W. Y. Zhu, Y. D. Zhang, Z. Zhu, L. Zhao, T. Chen, Q. Y. Zhao, L. H. Zhou, X. W. Fang, Y. P. Wang, and C. L. Wang. 2011. Detection of QTL for Cold Tolerance at Bud Bursting Stage Using Chromosome Segment Substitution Lines in Rice (Oryza sativa). Rice Sci. 18 : 71-74.   DOI
15 Lincoln, S. E., M. J. Daly, and E. S. Lander. 1993. Constructing Genetic Linkage Maps with MAPMAKER/EXP Version 3.0: A Tutorial and Reference Manual. 49 p.
16 Miura, K., S. Y. Lin, M. Yano, and T. Nagamine. 2001. Mapping quantitative trait loci controlling low temperature germinability in rice (Oryza sativa L.). Breeding Sci. 51 : 293-299.   DOI
17 Shakiba, E., J. D. Edwards, F. Jodari, S. E. Duke, A. M. Baldo, P. Korniliev, S. R. McCouch, and G. C. Eizenga. 2017. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis. PLoS One 12 : 1-22.
18 Najeeb, S., J. Ali, A. Mahender, Y. L. Pang, J. Zilhas, V. Murugaiyan, L. R. Vemireddy, and Z. Li. 2020. Identification of main-effect quantitative trait loci (QTLs) for low-temperature stress tolerance germination- and early seedling vigor-related traits in rice (Oryza sativa L.). Mol. Breed. 40 : 10.   DOI
19 Pradhan, B. K. and H. K. Badola. 2012. Effect of storage conditions and storage periods on seed germination in eleven populations of Swertia chirayita: A critically endangered medicinal herb in Himalaya. Sci. World J. 2012 : 1-9.   DOI
20 Redona, E. D. and D. J. Mackill. 1996. Mapping quantitative trait loci for seedling vigor in rice using RFLPs. Theor. Appl. Genet. 92 : 395-402.   DOI
21 Shon, J. Y., J. W. Kim, H. Y. Jung, B. K. Kim, and K. J. Choi. 2014. Percentge and speed of seed germination as affected by germinating temperature and storage duration in recently developed Korean Rice Cultivars. Korean J. Int. Agric. 26 : 440-446.   DOI
22 Suh, J. P., J. U. Jeung, J. I. Lee, Y. H. Choi, J. D. Yea, P. S. Virk, D. J. Mackill, and K. K. Jena. 2010. Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerant genotypes of rice (Oryza sativa L.). Theor. Appl. Genet. 120 : 985-995.   DOI
23 Teng, S., D. Zeng, Q. Qian, K. Yasufumi, D. Huang, and Z. Lihuang. 2001. QTL analysis of rice low temperature germinability. Chinese Sci. Bull. 46 : 1800-1804.   DOI
24 Thomas, B. R and R. L. Rodriguez. 1994. Metabolite signals regulate gene expression and source/sink relations in cereal seedlings. Plant Physiology 106 : 1235.   DOI
25 Zhang, L., H. Li, Z. Li, and J. Wang. 2008. Interactions between markers can be caused by the dominance effect of quantitative trait loci. Genetics 180 : 1177-1190.   DOI
26 Wade, M. J., R. G. Winther, A. F. Agrawal, and C. J. Goodnight. 2001. Alternative definitions of epistasis: Dependence and interaction. Trends Ecol. Evol. 16 : 498-504.   DOI
27 Wang, W., S. Peng, Q. Chen, J. Mei, H. Dong, and L. Nie. 2016. Effects of pre-sowing seed treatments on establishment of dry direct-seeded early rice under chilling stress. AoB Plants 8.
28 Wang, X., B. Zou, Q. Shao, Y. Cui, S. Lu, Y. Zhang, Q. Huang, J. Huang, and J. Hua. 2018. Natural variation reveals that OsSAP16 controls low-Temperature germination in rice. J. Exp. Bot. 69 : 413-421.   DOI
29 Wright, M. H., C. W. Tung, K. Zhao, A. Reynolds, S. R. McCouch, and C. D. Bustamante. 2010. ALCHEMY: A reliable method for automated SNP genotype calling for small batch sizes and highly homozygous populations. Bioinformatics 26 : 2952-2960.   DOI
30 Ye, C., S. Fukai, I. Godwin, R. Reinke, P. Snell, J. Schiller, and J. Basnayake. 2009. Cold tolerance in rice varieties at different growth stages. Crop Pasture Science 60 : 328-338.   DOI
31 Zhao, J., S. Zhang, J. Dong, T. Yang, X. Mao, Q. Liu, X. Wang, and B. Liu. 2017. A novel functional gene associated with cold tolerance at the seedling stage in rice. Plant Biotechnol. J. 15 : 1141-1148.   DOI
32 Fujino, K., H. Sekiguchi, T. Sato, H. Kiuchi, Y. Nonoue, Y. Takeuchi, T. Ando, S. Y. Lin, and M. Yano. 2004. Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor. Appl. Genet. 108 : 794-799.   DOI
33 Alhamdam, A. M., A. A. Alsadon, S. O. Khadil, M. A. Wahb-Allah, M. El Nagar, and A. A. Ibrahim. 2011. Influence of Storage Conditions on Seed Quality and Longevity of Four Vegetable Crops. Am. J. Agric. Environ. Sci. 11 : 353-359.
34 Andaya, V. C. and D. J. Mackill. 2003. Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J. Exp. Bot. 54 : 2579-2585.   DOI
35 Causse, M. A., T. M. Fulton, Y. G. Cho, S. N. Ahn, J. Chunwongse, K. Wu, J. Xiao, X. Yu, P. C. Ronald, and S. E. Harrington. 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138 : 1251-1274.   DOI
36 Cho, Y. G., M. R. Kang, Y. W. Kim, M. Y. Eun, T. Y. Chung, and Y. T. Lee. 1998. Development of RFLP framework map of rice (Oryza sativa L.) using recombinant inbred population derived from Milyang23/Gihobyeo cross. Korean Journal of Breeding 30 : 289-297.
37 Churchill, G. A. and R. W. Doerge. 1994. Empirical threshold values for quantitative trait mapping. Genetics 138 : 963-971.   DOI