• 제목/요약/키워드: recombinant inbred line

검색결과 22건 처리시간 0.021초

Quantitative Trait Loci Associated with Functional Stay-Green SNU-SG1 in Rice

  • Yoo, Soo-Cheul;Cho, Sung-Hwan;Zhang, Haitao;Paik, Hyo-Chung;Lee, Chung-Hee;Li, Jinjie;Yoo, Jeong-Hoon;Lee, Byun-Woo;Koh, Hee-Jong;Seo, Hak Soo;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • 제24권1호
    • /
    • pp.83-94
    • /
    • 2007
  • During monocarpic senescence in higher plants, functional stay-green delays leaf yellowing, maintaining photosynthetic competence, whereas nonfunctional stay-green retains leaf greenness without sustaining photosynthetic activity. Thus, functional stay-green is considered a beneficial trait that can increase grain yield in cereal crops. A stay-green japonica rice 'SNU-SG1' had a good seed-setting rate and grain yield, indicating the presence of a functional stay-green genotype. SNU-SG1 was crossed with two regular cultivars to determine the inheritance mode and identify major QTLs conferring stay-green in SNU-SG1. For QTL analysis, linkage maps with 100 and 116 DNA marker loci were constructed using selective genotyping with $F_2$ and RIL (recombinant inbred line) populations, respectively. Molecular marker-based QTL analyses with both populations revealed that the functional stay-green phenotype of SNU-SG1 is regulated by several major QTLs accounting for a large portion of the genetic variation. Three main-effect QTLs located on chromosomes 7 and 9 were detected in both populations and a number of epistatic-effect QTLs were also found. The amount of variation explained by several digenic interactions was larger than that explained by main-effect QTLs. Two main-effect QTLs on chromosome 9 can be considered the target loci that most influence the functional stay-green in SNU-SG1. The functional stay-green QTLs may help develop low-input high-yielding rice cultivars by QTL-marker-assisted breeding with SNU-SG1.

Mapping of Quantitative Trait Loci for Yield and Grade Related Traits in Peanut (Arachis hypogaea L.) Using High-Resolution SNP Markers

  • Liang, Yuya;Baring, Michael R.;Septiningsih, Endang M.
    • Plant Breeding and Biotechnology
    • /
    • 제6권4호
    • /
    • pp.454-462
    • /
    • 2018
  • Yield and grade are the key factors that affect production value of peanut. The objective of this study was to identify QTLs for pod yield, hundred-seed weight, and total sound mature kernel (TSMK). A total of 90 recombinant inbred lines, derived from Tamrun OL07 and a breeding line Tx964117, were used as a mapping population and planted in Brownfield and Stephenville, Texas. A genetic map was developed using 1,211 SNP markers based on double digest restriction-site associated DNA sequencing (ddRAD-seq). A total of 10 QTLs were identified above the permutation threshold, three for yield, three for hundred-seed weight and four for TSMK, with LOD score values of 3.7 - 6.9 and phenotypic variance explained of 12.2% - 35.9%. Among those, there were several QTLs that were detected in more than one field experiment. The commonly detected QTLs in this study may be used as potential targets for future breeding program to incorporate yield and grade related traits through molecular breeding.

Quantitative Trait Locus Mapping and Candidate Gene Analysis for Plant Architecture Traits Using Whole Genome Re-Sequencing in Rice

  • Lim, Jung-Hyun;Yang, Hyun-Jung;Jung, Ki-Hong;Yoo, Soo-Cheul;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • 제37권2호
    • /
    • pp.149-160
    • /
    • 2014
  • Plant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we analyzed six traits: plant height, tiller number, panicle diameter, panicle length, flag leaf length, and flag leaf width. We performed QTL analysis with 178 $F_7$ recombinant inbred lines (RILs) from a cross of japonica rice line 'SNU-SG1' and indica rice line 'Milyang23'. Using 131 molecular markers, including 28 insertion/deletion markers, we identified 11 main- and 16 minor-effect QTLs for the six traits with a threshold LOD value > 2.8. Our sequence analysis identified fifty-four candidate genes for the main-effect QTLs. By further comparison of coding sequences and meta-expression profiles between japonica and indica rice varieties, we finally chose 15 strong candidate genes for the 11 main-effect QTLs. Our study shows that the whole-genome sequence data substantially enhanced the efficiency of polymorphic marker development for QTL fine-mapping and the identification of possible candidate genes. This yields useful genetic resources for breeding high-yielding rice cultivars with improved plant architecture.

콩 우수 계통 '천알'에서 발견한 역병 저항성 유전자좌 (Identification of a Locus Associated with Resistance to Phytophthora sojae in the Soybean Elite Line 'CheonAl')

  • 유희진;강은지;강인정;김지민;강성택;이성우
    • 한국작물학회지
    • /
    • 제68권3호
    • /
    • pp.134-146
    • /
    • 2023
  • 콩 역병(Phytophthora root rot, PRR)은 난균(oomycete)인 Phytophthora sojae에 의해 발생하는 콩의 주요 병 중 하나로, 배수가 잘 안 되는 밭이나 습한 토양에서 심하게 발생한다. 역병의 피해를 효과적으로 줄일 수 있는 방법은 주로 역병 저항성 품종을 재배하는 것으로, 이는 저항성 유전자 Rps (resistance to P. sojae)에 대한 연구를 중심으로 이루어진다. 본 연구는 대풍 과 천알(계통명 SS0404-T5-76)을 교배하여 구축한 RIL (recombinant inbred line) 집단을 이용하여 콩 역병 균주40468과 연관된 저항성 유전자좌를 탐색하기 위해 수행되었다. 역병 균주40468에 대한 저항성 평가는 하배축 접종(hypocotyl inoculation) 방법으로 이루어졌다. 저항성 검정 결과, 천알은 저항성,대풍은 감수성을 보였고 집단 내에서는 계통들의 표현형이 분리되는 양상을 보였다. 집단 내에서 표현형 분포는 1:1 (R:S) (χ2 = 0.57, p = 0.75) 분리비와 일치하였으며, 이는 저항성 반응이 단일 유전자에 의해 조절됨을 나타낸다. 대풍, 천알과 각 RIL 계통들은 고밀도 SNP 유전자형 분석을 통해 데이터를 얻었고, 이를 바탕으로 유전자 지도를 작성하였다. 일원분산 분석(Single-marker ANOVA) 및 linkage analysis 결과, 18번 염색체의 55.9~56.4 Mbp에서 높은 통계적 유의성을 보였으며, 이 지역의 표현형 분산은 ~98%로 나타났다. 탐색된 영역은 다수의 선행연구에서 Rps의 위치로 보고된 지역과 겹치며, 콩 표준 유전체 정보를 기반으로 0.5 Mbp 범위 내에서 leucine-rich repeat (LRR) 또는 serine/threonine kinase(STK)을 합성하는 유전자 9개를 포함하고 있다. 천알은 역병 균주40468에 대한 저항성 유전자좌가 밝혀진 첫 국내 콩 품종으로, 본 연구에서 밝힌 천알의 저항성 유전자좌는 향후 역병 저항성 육종 및 연구에서 유용한 재료가 될 것이다.

Identification of QTLs controlling somatic embryogenesis using RI population of cultivar ${\times}$ weedy soybean

  • Choi, Pilson;Mano, Yoshiro;Ishikawa, Atsuko;Odashima, Masashi;Umezawa, Taishi;Fujimura, Tatsuhito;Takahata, Yoshihito;Komatsuda, Takao
    • Plant Biotechnology Reports
    • /
    • 제4권1호
    • /
    • pp.23-27
    • /
    • 2010
  • Quantitative trait loci (QTLs) controlling ability of somatic embryogenesis were identified in soybean. A frame map with 204-point markers was developed using an RI population consisting of 117 $F_{11}$ lines derived from a cross between cultivar 'Keburi' and a weedy soybean 'Masshokutou Kou 502'. The parents differed greatly in their abilities of somatic embryogenesis using immature cotyledons as explants. The ability of somatic embryogenesis was evaluated in five different experiments: the $F_{11}$ (evaluated in 1998) and $F_{15}$ (2002) generations cultured on basal media supplemented with $40\;mg\;l^{-1}$ 2,4-D (2,4-D1998 and 2,4-D2002), $F_{14}$ (2001) generation on medium with $40\;mg\;l^{-1}$ 2,4-D and high sucrose concentration [2,4-D2001 ($30\;g\;l^{-1}$ sucrose)], and the $F_{11}$ (1998) and $F_{12}$ (1999) generations on medium with $10\;mg\;l^{-1}$ NAA (NAA1998 and NAA1999). The RILs showed wide and continuous variations in each of the five experiments. In the composite interval mapping analysis, 2 QTLs were found in group 8 (D1b + W, LOD = 5.42, $r^2$ = 37.5) in the experiment of 2,4-D1998 and in group 6 (C2, LOD = 6.03, $r^2$ = 26.0) in the experiment of 2,4-D2001 (high concentration sucrose). In both QTLs, alleles of 'Masshokutou Kou 502' with high ability of somatic embryogenesis contributed to the QTLs. For the other three experiments, no QTL was detected in the criteria of LOD >3.0, suggesting the presence of minor genes.

Genetic Mapping of a Resistance Locus to Phytophthora sojae in the Korean Soybean Cultivar Daewon

  • Jang, Ik-Hyun;Kang, In Jeong;Kim, Ji-Min;Kang, Sung-Taeg;Jang, Young Eun;Lee, Sungwoo
    • The Plant Pathology Journal
    • /
    • 제36권6호
    • /
    • pp.591-599
    • /
    • 2020
  • Phytophthora root and stem rot reduce soybean yields worldwide. The use of R-gene type resistance is currently crucial for protecting soybean production. The present study aimed to identify the genomic location of a gene conferring resistance to Phytophthora sojae isolate 2457 in the recombinant inbred line population developed by a cross of Daepung × Daewon. Singlemarker analysis identified 20 single nucleotide polymorphisms associated with resistance to the P. sojae isolate 2457, which explained ~67% of phenotypic variance. Daewon contributed a resistance allele for the locus. This region is a well-known location for Rps1 and Rps7. The present study is the first, however, to identify an Rps gene locus from a major soybean variety cultivated in South Korea. Linkage analysis also identified a 573 kb region on chromosome 3 with high significance (logarithm of odds = 13.7). This genomic region was not further narrowed down due to lack of recombinants within the interval. Based on the latest soybean genome, ten leucine-rich repeat coding genes and four serine/ threonine protein kinase-coding genes are annotated in this region, which all are well-known types of genes for conferring disease resistance in crops. These genes would be candidates for molecular characterization of the resistance in further studies. The identified R-gene locus would be useful in developing P. sojae resistant varieties in the future. The results of the present study provide foundational knowledge for researchers who are interested in soybean-P. sojae interaction.

Studies on the Construction of Mutant Diversity Pool (MDP) lines, and their Genomic Characterization in Soybean

  • Dong-Gun Kim;Sang Hoon Kim;Chang-Hyu Bae;Soon-Jae Kwon
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2021년도 춘계학술대회
    • /
    • pp.9-9
    • /
    • 2021
  • Mutation breeding is useful for improving agronomic characteristics of various crops. In this study, we constructed soybean Mutant Diversity Pool (MDP) from 1,695 gamma-irradiated mutants through two selection phases over M1 to M12 generations; we selected 523 mutant lines exhibiting at least 30% superior agricultural characteristics, and, second, we eliminated redundant morphological phenotypes in the M12 generation. Finally, we constructed 208 MDP lines and investigated 11 agronomic traits. We then assessed the genetic diversity and inter-relationships of these MDP lines using target region amplification polymorphism (TRAP) markers. Among the different TRAP primer combinations, polymorphism levels and PIC values averaged 59.71% and 0.15, respectively. Dendrogram and population structure analyses divided the MDP lines into four major groups. According to an analysis of AMOVA, the percentage of inter-population variation among mutants was 11.320 (20.6%), whereas mutant inter-population variation ranged from 0.231 (0.4%) to 14.324 (26.1%). Overall, the genetic similarity of each cultivar and its mutants were higher than within other mutant populations. In an analysis of the genome-wide association study (GWAS) using based on the genotyping-by-sequencing (GBS), we detected 66 SNPs located on 13 different chromosomes were found to be highly associated with four agronomic traits: days of flowering (33 SNPs), flower color (16 SNPs), node number (6 SNPs), and seed coat color (11 SNPs). These results are consistent with those previously reported for other genetic resource populations, including natural accessions and recombinant inbred line. Our observations suggest that genomic changes in mutant individuals induced by gamma rays occurred at the same loci as those of natural soybean population. This study has demonstrated that the integration of GBS and GWAS can serve as a powerful complementary approach to gamma-ray mutation for the dissection of complex traits in soybean.

  • PDF

벼 RIL집단의 유전 분석과 농업형질 분석을 통한 도열병 저항성 QTL 탐색 및 유망계통 선발 (Genetic and Agronomic Analysis of a Recombinant Inbred Line Population to Map Quantitative Trait Loci for Blast Resistance and Select Promising Lines in Rice)

  • 하수경;정지웅;정종민;김진희;모영준
    • 한국작물학회지
    • /
    • 제65권3호
    • /
    • pp.172-181
    • /
    • 2020
  • 고시히카리는 도열병과 쓰러짐에 약하지만 밥맛 좋은 쌀로 유명하고, 육성된 지 60년이 넘은 지금까지도 일본에서 가장 많이 재배되는 품종이다. 고시히카리에 도열병에 강하면서 생육이 빠른 백일미를 교배한 RIL집단(KBRIL)에서 도열병 저항성에 대한 유전분석을 수행하여 저항성 유전자의 염색체 상 위치를 규명하고, 고시히카리의 우수한 미질을 보유하면서 도열병에도 강한 계통을 선발하기 위해 본 연구를 수행하였다. 주요 결과는 다음과 같다. 1. 고시히카리×백일미 RIL 394계통과 모·부본의 도열병 저항성(전주, 남원) 및 주요 농업형질을 조사하고, 유전 분석을 위해 사용된 142계통으로 총 130개 SNP 마커, 1,272.7cM의 유전자지도를 작성하였다. 도열병 저항성 QTL 분석 결과 전주에서는 1번 염색체의 qBL1.1이, 남원에서는 전주와 동일한 qBL1.1과 추가로 2번 염색체의 qBL2.1이 탐지되었다. 2. RIL 394계통의 qBL1.1과 qBL2.1 유전자형을 도출하고 각 QTL의 백일미 대립인자 집적에 의한 도열병 저항성 강화 효과를 관찰하였다. 전주에서는 qBL1.1의 경우에만 백일미 대립인자 집적에 의하여 도열병 저항성이 강화되었다. 반면 남원에서는 qBL1.1, qBL2.1 모두 백일미 대립인자가 집적될 때 도열병 저항성이 강화되었다. qBL1.1, qBL2.1은 출수기, 간장, 수장, 수수를 포함한 주요 농업형질에는 영향을 미치지 않았다. 3. 고시히카리×백일미 RIL 394계통 중에서 출수기와 간장을 기준으로 고시히카리와 유사하면서 도열병에 약/강한(KS/KR) 계통과 백일미와 유사하면서 도열병에 강한(BR) 계통을 각 15계통씩 선발하였다. KR 그룹은 완전 미율이 가장 우수하여 밥맛 검정, 수량성 등 추가조사를 통해 고시히카리의 우수한 밥맛을 지니면서 도열병 저항성을 보유한 고품질 밥쌀용 품종개발에 활용할 계획이다. 또한 BR그룹은 미질이 우수하면서 출수가 빠른 고품질 품종 개발에 유용할 것으로 기대된다.

Development of the pyramiding lines with strong culm genes derived from crosses among the SCM near isogenic lines in rice

  • Ookawa, Taiichiro;Kamahora, Eri;Ebitani, Takeshi;Yamaguchi, Takuya;Murata, Kazumasa;Iyama, Yukihide;Ozaki, Hidenobu;Adachi, Shunsuke;Hirasawa, Tadashi;Kanekatsu, Motoki
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.21-21
    • /
    • 2017
  • Severe lodging has recurrently occurred at strong typhoon's hitting in recent climate change. The identification of quantitative trait loci (QTLs) and their responsible genes associated with a strong culm and their pyramiding are important for developing high-yielding varieties with a superior lodging resistance. To identify QTLs for lodging resistance, the tropical japonica line, Chugoku 117 and the improved indica variety, Habataki were selected as the donor parent, as these had thick and strong culms compared with the temperate japonica varieties in Japan such as Koshihikari. By using chromosome segment substitution lines (CSSLs) in which chromosome segments from the japonica variety were replaced to them from Habataki, we identified the QTLs for strong culm on chrs. 1 and 6, which were designated as STRONG CULM1 (SCM1) and STRONG CULM2 (SCM2), respectively. By using recombinant inbred lines (BILs) derived from a cross between Chugoku 117 and Koshihikari and introgression lines, we also identified the other QTLs for strong culm on chrs. 3 and 2, which were designated as STRONG CULM3 (SCM3) and STRONG CULM4 (SCM4), respectively. Candidate region of SCM1 includes Gn1 related to grain number. SCM2 was identical to APO1, a gene related to the control of panicle branch number, and SCM3 was identical to FC1, a strigolactone signaling associated gene, by performing fine mapping and positional cloning of these genes. To evaluate the effects of SCM1~SCM4 on lodging resistance, the Koshihiakri near isogenic line (NIL) with the introgressed SCM1 or SCM2 locus of Habataki (NIL-SCM1, NIL-SCM2) and the another Koshihikari NIL with the introgeressed SCM3 or SCM4 locus of Chugoku 117 (NIL-SCM3, NIL-SCM4) were developed. Then, we developed the pyramiding lines with double or triple combinations derived from step-by-step crosses among NIL-SCM1 NIL-SCM4. Triple pyramiding lines (NIL-SCM1+2+3, ~ NIL-SCM1+3+4) showed the largest culm diameter and the highest culm strength among the combinations and increased spikelet number due to the pleiotropic effects of these genes. Pyramiding of strong culm genes resulted in much increased culm thickness, culm strength and spikelet number due to their additive effect. SCM1 mainly contributed to enhance their pyramiding effect. These results in this study suggest the importance of identifying the combinations of superior alleles of strong culm genes among natural variation and pyramiding these genes for improving high-yielding varieties with a superior lodging resistance.

  • PDF

토마토 유전자연관지도 상의 DarT 마커 분포 (Distribution of DArT Markers in a Genetic Linkage Map of Tomato)

  • Truong, Hai Thi Hong;Graham, Elaine;Esch, Elisabeth;Wang, Jaw-Fen;Hanson, Peter
    • 원예과학기술지
    • /
    • 제28권4호
    • /
    • pp.664-671
    • /
    • 2010
  • 토마토풋마름병에 저항성인 $Solanum$ $lycopersicum$ H7996와 극도감수성인 $S.$ $pimpinellifolium$ WVa700 간의 교배를 통해 획득한 재조합순계계통 $F_9$ 세대의 188개체를 이용하여 유전자연관지도를 작성하였다. 유전자지도는 DarT 260종, AFLP 74종, RFLP 4종, SNP 1종 및 SSR 22종 등 총 361종의 마커로 구성되었다. 작성된 유전자지도는 총 13개의 연관군(LG)에 2042.7cM을 포함하였으며 마커간의 평균지도거리는 5.7cM이고 이중 DArT마커는 평균 7.9cM당 1개가 분포하였다. SSR 마커의 분포를 기초로 작성된 11개 연관군들은 토마토 염색체의5번과 12번을 제외한 10개 염색체에 해당하였다. DArT 마커는 다른 마커들처럼 토마토 유전체 상에 고르게 분포하였으며, 인접 마커와의 상호분석(${\leq}$ 0.5cM) 결과 클러스터링 빈도가 13.5%인 AFLP 마커보다 3배 정도 높은 38.8%의 빈도로 최고치를 나타내었다. 본 연구를 통해 토마토에서 최초로 DarT 마커를 이용한 유전자연관지도를 작성하였다.